

BCM847BS

NPN matched double transistor; $\Delta h_{\text{FE}} = 10~\%$

Rev. 02 — 6 April 2005

Product data sheet

1. Product profile

1.1 General description

NPN matched double transistor in a SOT363 (SC-88) SMD plastic package. Matched version of BC847BS. The transistors are fully isolated internally.

PNP equivalent: BCM857BS.

1.2 Features

- Current gain matching
- Base-emitter voltage matching

1.3 Applications

- Current mirror
- Differential amplifier

1.4 Quick reference data

Table 1: Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CEO}	collector-emitter voltage	open base	-	-	45	V
I _C	collector current		-	-	100	mA
h _{FE}	DC current gain	$V_{CE} = 5 \text{ V};$ $I_{C} = 2 \text{ mA}$	200	290	450	
Δh_{FE}	h _{FE} matching	$V_{CE} = 5 \text{ V};$ $I_{C} = 2 \text{ mA}$	-	-	10	%
ΔV_{BE}	V _{BE} matching	$V_{CE} = 5 \text{ V};$ $I_{C} = 2 \text{ mA}$	-	-	2	mV

2. Pinning information

Table 2: Pinning

Pin	Description	Simplified outline	Symbol
1	emitter TR1	G. G. G.	
2	base TR1	6 5 4	6 5 4
3	collector TR2		TR2
4	emitter TR2	0	(TR1)
5	base TR2	□1 □2 □3	
6	collector TR1		1 2 3
			sym020

3. Ordering information

Table 3: Ordering information

Type number	Package		
	Name	Description	Version
BCM847BS	SC-88	plastic surface mounted package; 6 leads	SOT363

4. Marking

Table 4: Marking codes

Type number	Marking code [1]
BCM847BS	M1*

- [1] * = -: made in Hong Kong
 - * = p: made in Hong Kong
 - * = t: made in Malaysia
 - * = W: made in China

5. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Per transis	stor				
V_{CBO}	collector-base voltage	open emitter	-	50	V
V_{CEO}	collector-emitter voltage	open base	-	45	V
V_{EBO}	emitter-base voltage	open collector	-	6	V
Ic	collector current (DC)		-	100	mA
I _{CM}	peak collector current	single pulse; $t_p \le 1 \text{ ms}$	-	200	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	-	200	mW
T _{stg}	storage temperature		-65	+150	°C
T _j	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C
Per device					
P _{tot}	total power dissipation	$T_{amb} \le 25 ^{\circ}C$	<u>[1]</u> -	300	mW

^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

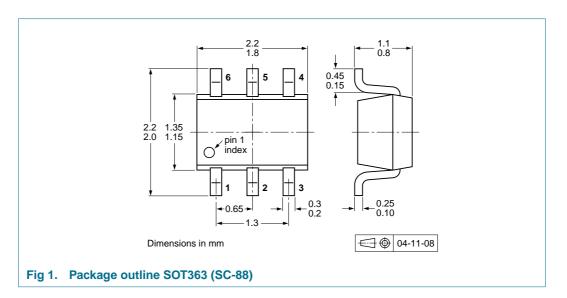
6. Thermal characteristics

Table 6: Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per device	е					
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	<u>[1]</u> -	-	416	K/W

^[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

7. Characteristics


Table 7: Characteristics

 $T_{amb} = 25 \,^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Per trans	sistor						
I _{CBO}	collector-base cut-off	$V_{CB} = 30 \text{ V}; I_E = 0 \text{ A}$		-	-	15	nA
	current	$V_{CB} = 30 \text{ V; } I_E = 0 \text{ A;}$ $T_j = 150 ^{\circ}\text{C}$		-	-	5	μΑ
I _{EBO}	emitter-base cut-off current	$V_{EB} = 5 \text{ V}; I_{C} = 0 \text{ A}$		-	-	100	nA
h _{FE}	DC current gain	V_{CE} = 5 V; I_{C} = 10 μA		-	250	-	
		$V_{CE} = 5 \text{ V}; I_{C} = 2 \text{ mA}$		200	290	450	
V _{CEsat} collector-emitter	$I_C = 10 \text{ mA}; I_B = 0.5 \text{ mA}$		-	50	200	mV	
	saturation voltage	$I_C = 100 \text{ mA}; I_B = 5 \text{ mA}$	[1]	-	200	400	mV
V _{BEsat}	base-emitter saturation voltage	$I_C = 10 \text{ mA}; I_B = 0.5 \text{ mA}$		-	760	-	mV
		I _C = 100 mA; I _B = 5 mA		-	910	-	mV
V_{BE}	base-emitter voltage	$V_{CE} = 5 \text{ V}; I_{C} = 2 \text{ mA}$		610	660	710	mV
		$V_{CE} = 5 \text{ V}; I_{C} = 10 \text{ mA}$		-	-	770	mV
C _c	collector capacitance	$V_{CB} = 10 \text{ V}; I_E = i_e = 0 \text{ A};$ f = 1 MHz		-	-	1.5	pF
Ce	emitter capacitance	$V_{EB} = 0.5 \text{ V}; I_C = I_c = 0 \text{ A};$ f = 1 MHz		-	11	-	pF
f _T	transition frequency	$V_{CE} = 5 \text{ V}; I_{C} = 10 \text{ mA};$ f = 100 MHz		100	250	-	MHz
Per devi	ce						
Δh_{FE}	DC current gain matching	$V_{CE} = 5 \text{ V}; I_C = 2 \text{ mA}$		-	-	10	%
ΔV_{BE}	base-emitter voltage matching	$V_{CE} = 5 \text{ V}; I_C = 2 \text{ mA}$		-	-	2	mV

^[1] Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$

8. Package outline

9. Packing information

Table 8: Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code. [1]

Type number	Package	Description		Packing	quantity
				3000	10000
BCM847BS	SOT363	4 mm pitch, 8 mm tape and reel; T1	[2]	-115	-135
		4 mm pitch, 8 mm tape and reel; T2	[3]	-125	-165

^[1] For further information and the availability of packing methods, see Section 14.

^[2] T1: normal taping

^[3] T2: reverse taping

10. Revision history

Table 9: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
BCM847BS_2	20050406	Product data sheet	-	9397 750 14722	BCM847BS_1
Modifications:	 <u>Table 7</u> Revaluation of data according to the latest control samples <u>Table 7</u> I_{CBO} unit for conditions V_{CB} = 30 V; I_E = 0 A; T_i = 150 °C amended to μA 				
BCM847BS_1	20040914	Product data sheet	-	9397 750 13711	•

11. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

12. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

13. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

14. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

NPN matched double transistor; $\Delta h_{FE} = 10 \%$

15. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information 2
3	Ordering information
4	Marking 2
5	Limiting values 3
6	Thermal characteristics 3
7	Characteristics 4
8	Package outline 5
9	Packing information 5
10	Revision history 6
11	Data sheet status
12	Definitions 7
13	Disclaimers 7
11	Contact information 7

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 6 April 2005 Document number: 9397 750 14722

