

October 1987 Revised January 1999

CD4029BC

Presettable Binary/Decade Up/Down Counter

General Description

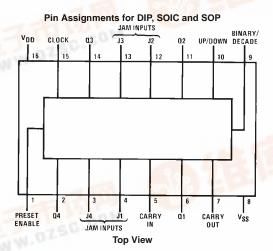
The CD4029BC is a presettable up/down counter which counts in either binary or decade mode depending on the voltage level applied at binary/decade input. When binary/decade is at logical "1", the counter counts in binary, otherwise it counts in decade. Similarly, the counter counts up when the up/down input is at logical "1" and vice versa.

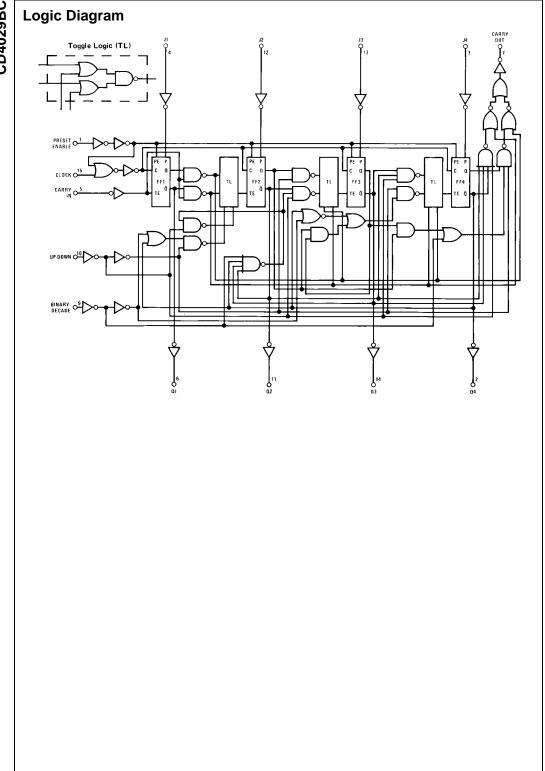
A logical "1" preset enable signal allows information at the "jam" inputs to preset the counter to any state asynchronously with the clock. The counter is advanced one count at the positive-going edge of the clock if the carry in and preset enable inputs are at logical "0". Advancement is inhibited when either or both of these two inputs is at logical "1". The carry out signal is normally at logical "1" state and goes to logical "0" state when the counter reaches its

maximum count in the "up" mode or the minimum count in the "down" mode provided the carry input is at logical "0" state.

All inputs are protected against static discharge by diode clamps to both $\rm V_{DD}$ and $\rm V_{SS}.$

Features


- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: fan out of 2 driving 74L or 1 driving 74LS
- Parallel jam inputs
- Binary or BCD decade up/down counting


Ordering Code:

Order Number	Package Number	Package Description				
CD4029BCWM	M16B	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide body				
CD4029BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
CD4029BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Connection Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

DC Supply Voltage (V_{DD}) $-0.5 \text{V to } +18 \text{ V}_{DC}$ Input Voltage (V_{IN}) $-0.5 \text{V to V}_{DD} + 0.5 \text{ V}_{DC}$

Storage Temperature Range (T_S) $-65^{\circ}C$ to $+150^{\circ}C$

Power Dissipation (P_D)

Dual-In-Line 700 mW
Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

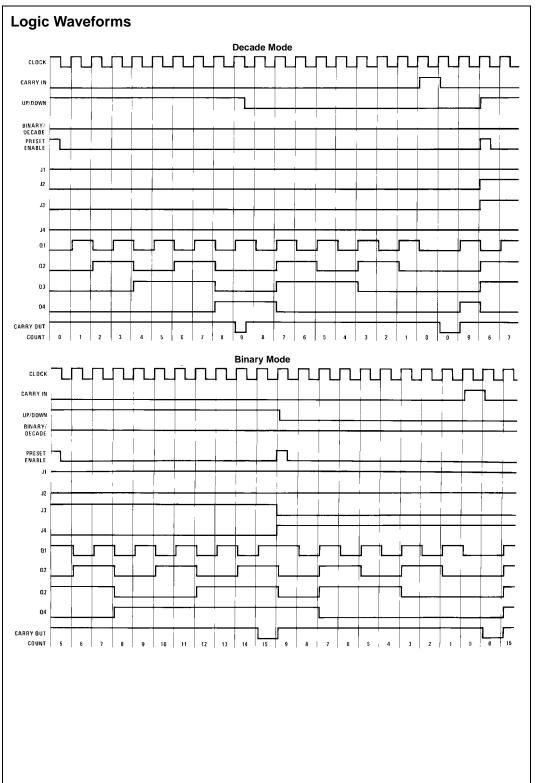
DC Supply Voltage (V_{DD}) 3V to 15 V_{DC} Input Voltage (V_{IN}) 0V to V_{DD} V_{DC} Operating Temperature Range (T_A) -40° C to $+85^{\circ}$ C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

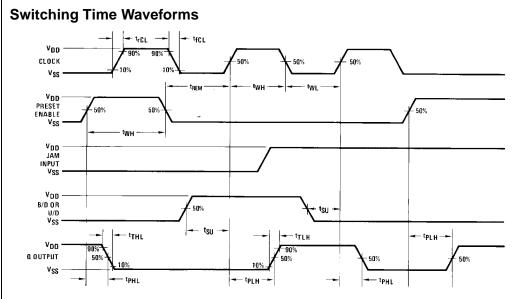
Note 2: V_{SS} = 0V unless otherwise specified.

DC Electrical Characteristics (Note 2)

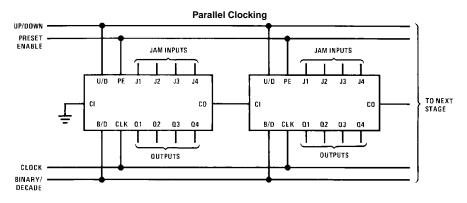
Symbol	Parameter	Conditions	-40°C		+25°C			+85°C		Units
Syllibol	rai ailletei	Conditions	Min	Max	Min	Тур	Max	Min	Max	Ullits
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		20			20		150	μΑ
		V _{DD} = 10V		40			40		300	μΑ
		V _{DD} = 15V		80			80		600	μΑ
V _{OL}	LOW Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
		V _{DD} = 10V		0.05		0	0.05		0.05	V
		V _{DD} = 15V		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	I _O < 1 μA								_
	Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
		V _{DD} = 10V	9.95		9.95	10		9.95		V
		V _{DD} = 15V	14.95		14.95	15		14.95		V
V _{IL}	LOW Level	$V_{DD} = 5V$, $V_{O} = 0.5V$ or 4.5V		1.5			1.5		1.5	V
	Input Voltage	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$		3.0			3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0			4.0		4.0	V
V _{IH}	HIGH Level	$V_{DD} = 5V$, $V_{O} = 0.5V$ or 4.5V	3.5		3.5			3.5		V
	Input Voltage	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$	7.0		7.0			7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0			11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μА
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μΑ

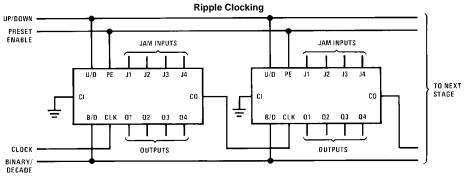

Note 3: I_{OH} and I_{OL} are tested one output at a time.

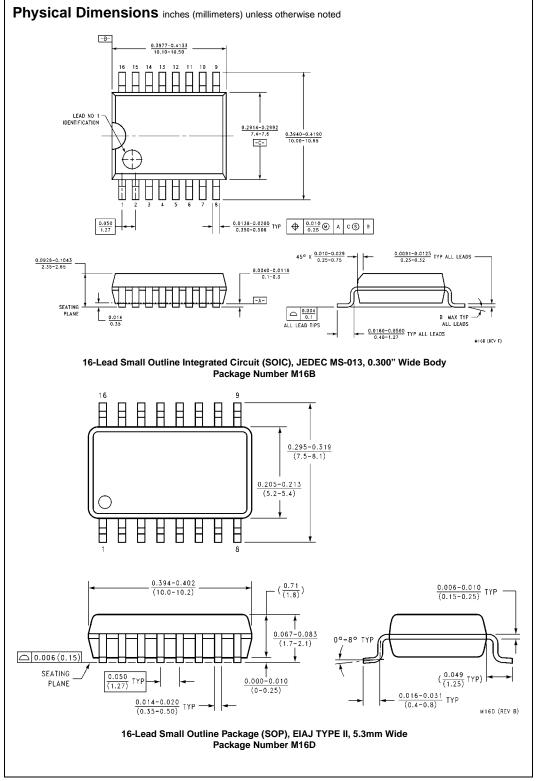
AC Electrical Characteristics (Note 4) $T_A=25^{\circ}C,\,C_L=50\,\,\text{pF},\,R_L=200k,\,\text{Input}\,\,t_{rCL}=t_{fCL}=20\,\,\text{ns},\,\text{unless otherwise specified}$


Symbol	Parameter	Conditions	Min	Тур	Max	Units
CLOCKED OPER	ATION		1		1	
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		200	400	ns
	to Q Outputs	$V_{DD} = 10V$		85	170	ns
		$V_{DD} = 15V$		70	140	ns
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		320	640	ns
THE TEN	to Carry Output	V _{DD} = 10V		135	270	ns
		V _{DD} = 15V		110	220	ns
t _{PHL} or t _{PLH}	Propagation Delay Time	C _L = 15 pF				
THE TEN	to Carry Output	$V_{DD} = 5V$		285	570	ns
		V _{DD} = 10V		120	240	ns
		V _{DD} = 15V		95	190	ns
t _{THL} or t _{TLH}	Transition Time/Q	V _{DD} = 5V		100	200	ns
THE TEN	or Carry Output	V _{DD} = 10V		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WH} or t _{WL}	Minimum Clock	V _{DD} = 5V		160	320	ns
**** ***	Pulse Width	V _{DD} = 10V		70	135	ns
		$V_{DD} = 15V$		55	110	ns
t _{rCL} or t _{fCL}	Maximum Clock Rise	$V_{DD} = 5V$	15			μs
TOE TOE	and Fall Time	V _{DD} = 10V	10			μs
		$V_{DD} = 15V$	5			μs
t _{SU}	Minimum Set-Up Time	V _{DD} = 5V		180	360	ns
-30		$V_{DD} = 10V$		70	140	ns
		$V_{DD} = 15V$		55	110	ns
f _{CL}	Maximum Clock Frequency	V _{DD} = 5V	1.5	3.1		MHz
-GL		$V_{DD} = 10V$	3.7	7.4		MHz
		V _{DD} = 15V	4.5	9		MHz
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance	Per Package (Note 5)		65		pF
PRESET ENABLE	' '					' '
t _{PHL} or t _{PLH}	Propagation Delay Time	V _{DD} = 5V		285	570	ns
	to Q output	V _{DD} = 10V		115	230	ns
	·	$V_{DD} = 15V$		95	195	ns
t _{PHL} or t _{PLH}	Propagation Delay Time	V _{DD} = 5V		400	800	ns
THE TEN	to Carry Output	$V_{DD} = 10V$		165	330	ns
	, ,	V _{DD} = 15V		135	260	ns
t _{WH}	Minimum Preset Enable	V _{DD} = 5V		80	160	ns
****	Pulse Width	V _{DD} = 10V		30	60	ns
		V _{DD} = 15V		25	50	ns
t _{REM}	Minimum Preset Enable	$V_{DD} = 5V$		150	300	ns
KLIWI	Removal Time	$V_{DD} = 10V$		60	120	ns
		V _{DD} = 15V		50	100	ns
CARRY INPUT OF	PERATION	00 -				
t _{PHL} or t _{PLH}	Propagation Delay Time	V _{DD} = 5V		265	530	ns
	to Carry Output	V _{DD} = 10V		110	220	ns
	,,	V _{DD} = 15V		90	180	ns
t _{PHL} , t _{PLH}	Propagation Delay Time	C _L = 15 pF				
THE TEN	to Carry Output	$V_{DD} = 5V$		200	400	ns
		$V_{DD} = 10V$		85	170	ns

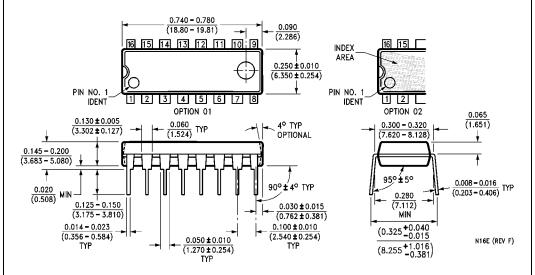
Note 4: *AC Parameters are guaranteed by DC correlated testing.


Note 5: CPD determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C Family Characteristics application note, AN-90.





Cascading Packages



Carry out lines at the 2nd or later stages may have a negative-going spike due to differential internal delays. These spikes do not affect counter operation, but if the carry out is used to trigger external circuitry the carry out should be gated with the clock.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com