查询SN74BCT29854供应商

捷多邦,专业PCB打样工厂,24小时加**急队没**BCT29854 8-BIT TO 9-BIT PARITY BUS TRANSCEIVER

SCBS257 - SEPTEMBER 1987 - REVISED NOVEMBER 1993

- BiCMOS Process With TTL Inputs and Outputs
 State-of-the-Art BiCMOS Design Significantly Reduces Standby Current
 Flow-Through Pinout (All Inputs on Opposite Side From Outputs)
 DW OR NT PACKAGE (TOP VIEW)
 DEA [1 24] VC A1 [2 23] B1 A2 [3 22] B2 A3 [4 21] B3
 - Functionally Equivalent to AMD Am29854
 - High-Speed Bus Transceiver With Parity Generator/Checker
 - Parity-Error Flag With Open-Collector
 Output
 - Latch for Storage of the Parity-Error Flag
 - Package Options Include Plastic Small-Outline (DW) Packages and Standard Plastic 300-mil DIPs (NT)

(TOP VIEW) OEA 24 Vcc 23 B1 A1 2 A2 22 B2 3 A3 21 B3 4 20 B4 A4 5 A5 [19 B5 6 18 🛛 B6 A6 7 17 B7 A7 [8 A8 [16 **🛛** B8 9 ERR 15 PARITY 10 CLR 14 OEB 11 GND 12 13 LE

WWW.DZSC.CO

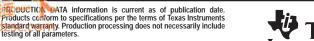
description

The SN74BCT29854 is an 8-bit to 9-bit parity transceiver designed for asynchronous communication between data buses. When data is transmitted from the A to B bus, a parity bit is generated. When data is transmitted from the B to A bus with its corresponding parity bit, the parity-error (ERR) output will indicate whether or not an error in the B data has occurred. The output-enable (OEA, OEB) inputs can be used to disable the device so that the buses are effectively isolated.

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the I/O ports with an open-collector parity-error (ERR) flag. ERR can be either passed, sampled, stored, or cleared from the latch using the latch-enable (\overline{LE}) and clear (\overline{CLR}) control inputs. When both \overline{OEA} and \overline{OEB} are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition which gives the designer more system diagnostic capability. The SN74BCT29854 provides inverting logic.

The SN74BCT29854 is characterized for operation from 0°C to 70°C.

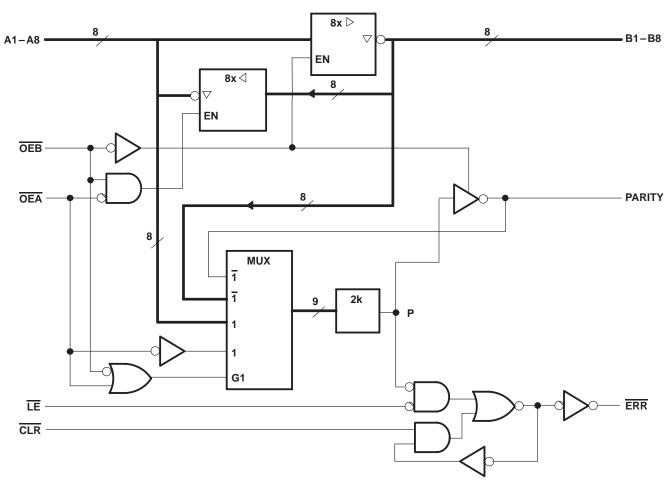
					2.00	FUNC	TION TA	BLE				
		INPUTS				OUTPUT AND I/O						
OEB	OEA	CLR	LE	Ai ∑ of H's	Bi [†] ∑ of L's	А	В	PARITY	ERR‡	FUNCTION		
L	Н	Х	Х	Odd Even	NA	NA	Ā	H L	NA	A data to B bus and generate parity		
Н	L	Х	L	NA	Odd Even	B	NA	NA	HL	B data to A bus and check parity		
Н	L	Н	Н	NA	Х	Х	NA	NA	N-1	Store error flag		
Х	Х	L	Н	Х	Х	Х	NA	NA	Н	Clear error-flag register		
Н	н	H L X X	H H L	X X L Odd H Even	25 ^{×.00}	Z	Z	z	NC H L H	Isolation§		
14	L	х	х	Odd Even	NA	NA	Ā	L H	NA	Ā data to B bus and generate inverted parity		

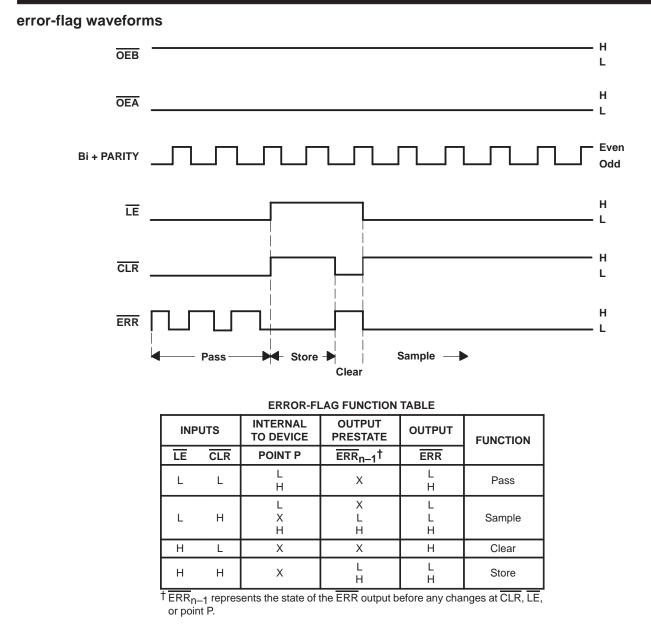

NA = not applicable, NC = no change, X = don't care

[†] Summation of low-level inputs includes PARITY along with Bi inputs.

 \ddagger Output states shown assume the ERR output was previously high.

§ In this mode, the ERR output, when enabled, shows noninverted parity of the A bus.




SCBS257 - SEPTEMBER 1987 - REVISED NOVEMBER 1993

logic diagram (positive logic)

SCBS257 - SEPTEMBER 1987 - REVISED NOVEMBER 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage, V _{CC}	
Input voltage, V ₁	
Voltage applied to a disabled I/O port	5.5 V
Operating free-air temperature range	0°C to 70°C
Storage temperature range	65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SCBS257 - SEPTEMBER 1987 - REVISED NOVEMBER 1993

recommended operating conditions

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5	5.5	V
VIH	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
VOH	High-level output voltage	ERR			2.4	V
ЮН	High-level output current				-24	mA
IOL	Low-level output current				48	mA
TA	Operating free-air temperature		0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	т	TEST CONDITIONS			MAX	UNIT
	V _{CC} = 4.5 V,	lj = -18 mA			-1.2	V
VOH All inputs /outputs except ERR	V _{CC} = 4.5 V	I _{OH} = -15 mA	2.4			V
		I _{OH} = -24 mA	2			v
ERR	V _{CC} = 4.5 V,	V _{OH} = 2.4 V			20	μA
	V _{CC} = 4.5 V,	I _{OL} = 48 mA		0.35	0.5	V
	V _{CC} = 5.5 V,	VI = 5.5 V			0.1	mA
	V _{CC} = 5.5 V,	VI = 2.7 V			20	μA
Data		<u>)</u> (, 0.4)(-0.2	mA
Control	VCC = 5.5 V,	V] = 0.4 V			-0.75	mA
	V _{CC} = 5.5 V,	$V_{O} = 0$	-75		-250	mA
	V _{CC} = 5.5 V,	Outputs open		55	80	mA
	V _{CC} = 5.5 V,	Outputs open		30	45	mA
	All inputs/outputs except ERR ERR Data	VCC = 4.5 V,All inputs/outputs except ERR $V_{CC} = 4.5 V$ ERR $V_{CC} = 4.5 V$,VCC = 4.5 V, $V_{CC} = 4.5 V$,VCC = 5.5 V, $V_{CC} = 5.5 V$,Data $V_{CC} = 5.5 V$,Control $V_{CC} = 5.5 V$,VCC = 5.5 V, $V_{CC} = 5.5 V$,VCC = 5.5 V, $V_{CC} = 5.5 V$,	$\begin{tabular}{ c c c c c c } \hline V_{CC} = 4.5 \ V, & I_I = -18 \ mA \\ \hline I_{OH} = -15 \ mA \\ \hline I_{OH} = -24 \ mA \\ \hline V_{CC} = 4.5 \ V, & V_{OH} = 2.4 \ V \\ \hline V_{CC} = 4.5 \ V, & I_{OL} = 48 \ mA \\ \hline V_{CC} = 5.5 \ V, & V_I = 5.5 \ V \\ \hline V_{CC} = 5.5 \ V, & V_I = 2.7 \ V \\ \hline Data & V_{CC} = 5.5 \ V, & V_I = 0.4 \ V \\ \hline Control & V_{CC} = 5.5 \ V, & V_O = 0 \\ \hline V_{CC} = 5.5 \ V, & Outputs \ open \\ \hline \end{tabular}$	$ \begin{array}{c c c c c c c c c } & V_{CC} = 4.5 \ V, & I_I = -18 \ \text{mA} & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c } \hline V_{CC} = 4.5 \ V, & I_I = -18 \ mA & -1.2 \\ \hline V_{CC} = 4.5 \ V, & I_{OH} = -15 \ mA & 2.4 \\ \hline I_{OH} = -24 \ mA & 2 \\ \hline \hline I_{OH} = -24 \ mA & 2 \\ \hline \hline I_{OH} = -24 \ mA & 0.35 \ 0.5 \\ \hline V_{CC} = 4.5 \ V, & V_{OH} = 2.4 \ V & 0.1 \\ \hline V_{CC} = 4.5 \ V, & I_{OL} = 48 \ mA & 0.35 \ 0.5 \\ \hline V_{CC} = 5.5 \ V, & V_I = 5.5 \ V & 0.1 \\ \hline V_{CC} = 5.5 \ V, & V_I = 2.7 \ V & 20 \\ \hline \hline Data & V_{CC} = 5.5 \ V, & V_I = 0.4 \ V & -0.2 \\ \hline \hline Data & V_{CC} = 5.5 \ V, & V_I = 0.4 \ V & -0.75 \\ \hline V_{CC} = 5.5 \ V, & V_O = 0 & -75 \ -250 \\ \hline V_{CC} = 5.5 \ V, & Outputs \ open & 55 \ 80 \\ \hline \end{tabular}$

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] These parameters include off-state output current for I/O ports only.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			MIN	MAX	UNIT
tw	Pulse duration	LE low	10		
		CLR low	10		ns
t _{su}	Setup time before $\overline{LE}\downarrow$	Bi and PARITY	18		ns
t _h	Hold time after $\overline{LE}\downarrow$	Bi and PARITY	8		ns

SCBS257 - SEPTEMBER 1987 - REVISED NOVEMBER 1993

ritching charact nperature, C _L =	teristics over recomn 50 pF (unless otherw	nended ranges of su rise noted) (see Note	pply v 1)	oltage	e and	opera	ting f	free-ai
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN	MAX	UNIT
			MIN	TYP	MAX			
^t PLH	A or B	B or A	1	5	7	1	8	ns
^t PHL		BUTA	1	5	7	1	8	
^t PLH	A	PARITY	1.5	10	13	1.5	15	ns
^t PHL		PARITY	1.5	10	13	1.5	15	
^t PZH	OEA or OEB	A or B	2	12	15	2	17	ns
^t PZL			2	13	16	2	19	
^t PHZ		A at D	2	8	11	2	15	
^t PLZ	OEA or OEB	A or B	2	10	14	2	17	ns
^t PLH	CLR		1.5	11	13	1.5	15	
^t PHL	LE	ERR	1.5	5	7	1.5	9	ns
^t PLH	OEA		1.5	10	13	1.5	15	
^t PHL		PARITY	1.5	10	13	1.5	16	ns
^t PLH	Bi/PARITY	ERR	1.5	15	18	1.5	20	
^t PHL			1.5	10	13	1.5	15	ns

ما م ما ملامه ation fo a la a £ . مراجع مراب - - 1 - - 1 - 11 .

NOTE 1: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated