

3-phase motor driver for CD-ROMs BD6660FV

The BD6660FV is low power consumption CD-ROM spindle driver that uses MOS transistor in the output. To meet the requirements for notebook computers, the thin power package SSOP-B28 is used and a PWM drive with a MOS processor output stage achieves an extremely low power consumption.

Applications

Portable CD-ROMs, DVDs

Features

- 1) Direct PWM drive.
- 2) Built-in power save circuit.
- 3) Built-in current limiter circuit.

• Absolute maximum ratings (Ta = 25° C)

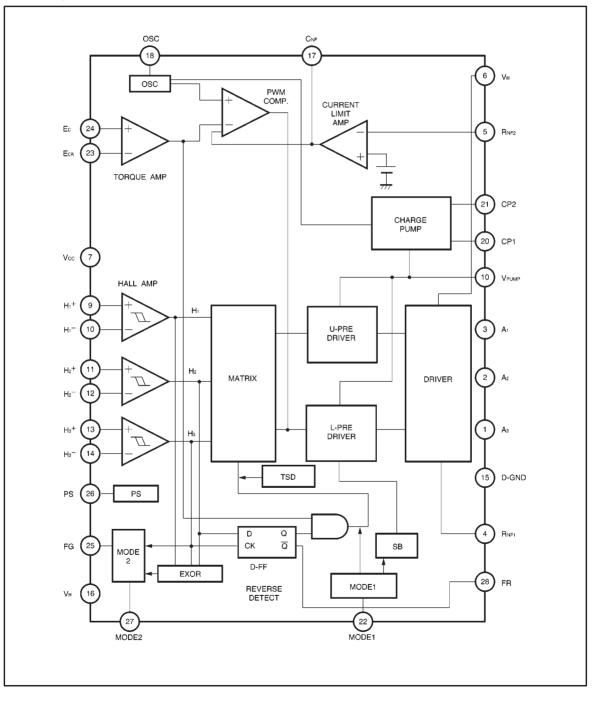
- 4) Built-in FG output.
- 5) Built-in Hall biasing.

- 6) Built-in reverse-rotation prevention circuit.
- 7) Built-in short brake.
- 8) Low power consumption with the output MOSFET.
- 9) Built-in brake mode switching circuit.
- 10) Built-in rotation detection pin.

	•		
Parameter	Symbol	Limits	Unit
Applid voltage	Vcc	7.150	V
Applid voltage	Vм	7	V
Power dissipation	Pd	1020*1	mW
Operating temperature	Topr	-20~+75	C
Storage temperature	Tstg	-55~+150	Ĉ
Output current	Іомах	1000*2	mA

*1 When mounted on a 70mm×70mm×1.6mm glass epoxy board. Reduced by 8.16mW for each increase in Ta of 1°C over 25°C.

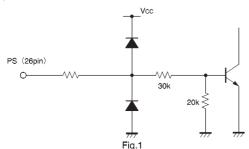
*2 Should not exceed Pd or ASO values.


• Recommended operating conditions (Ta = 25° C)

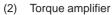
Parameter	Symbol	Limits	Unit
Operating power supply voltage	Vcc	4.5~5.5	V
	Vм	3~6.5	V
	VPUMP	14	V

BD6660FV

Block diagram



Pin descriptions


Pin No.	Pin name	Functiom		
1	Аз	Output		
2	A2	Output		
3	A1	Output		
4		For connection of resistor for output current detection		
5	RNF2	For connection of resistor for output current detection		
6	νм	Motor power supply		
7	Vcc	Power supply		
8	GND	GND		
9	H1+	Hall signal input		
10	H1-	Hall signal input		
11	H ₂ +	Hall signal input		
12	H2	Hall signal input		
13	H₃+	Hall signal input		
14	H₃−	Hall signal input		
15	D-GND	Digital—GND		
16	Vн	Hall bias		
17	Cnf	For connection of capacitor for phase compensation		
18	OSC	For connection of capacitor for oscillator		
19	VPUMP	Charge pump output		
20	CP1	For connection of capacitor 1 for charge pump		
21	CP ₂	For connection of capacitor 2 for charge pump		
22	MODE1	Brake mode switch		
23	ECR	Output voltage control reference		
24	Ec	Output voltage control		
25	FG	FG output		
26	PS	Power save		
27	MODE2	FG output switching		
28	FR	Rotation direction sensor		

Input and output circuits

(1) Power save

BD6660FV

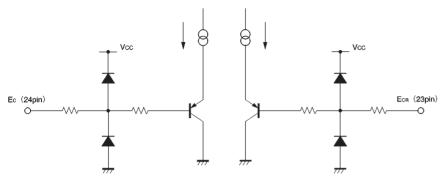


Fig.2

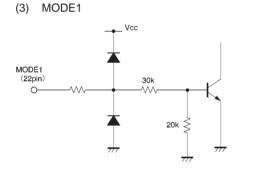
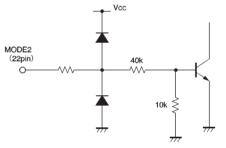
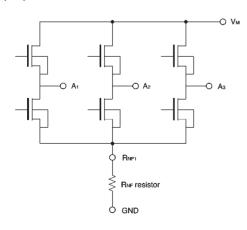



Fig.3


(4) MODE2

*Resistor values are typical values.

Fig.4

(5) Output pin

(6) Hall bias pin

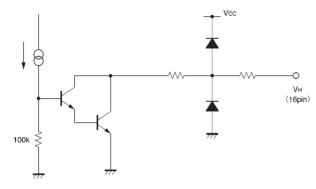


Fig.6

(7) FG output / CP1 output / FR output

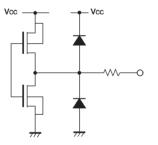
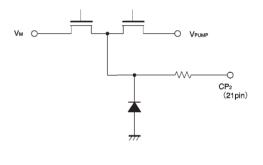
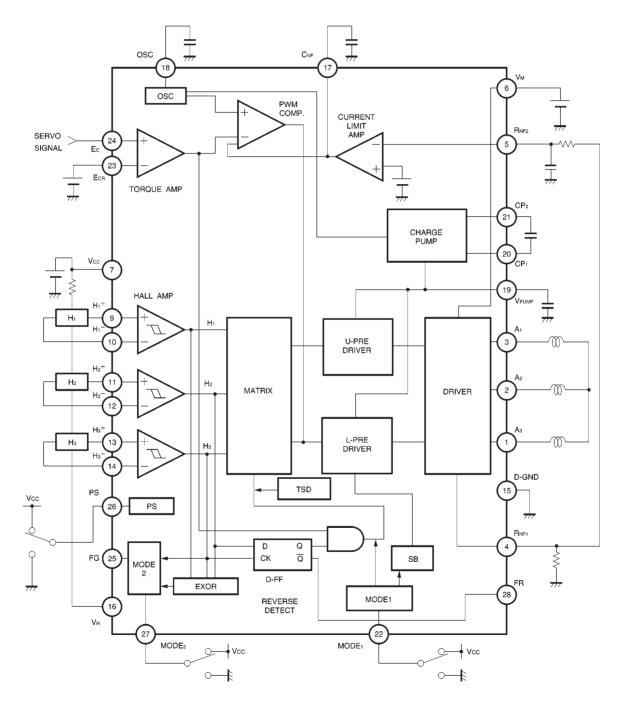



Fig.7

(8) CP₂ / V_{PUMP} output


BD6660FV

Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
〈Overall〉						
Circuit current 1	lcc1	_	-	0.4	mA	Standby mode
Circuit current 2	lcc2	_	4.2	_	mA	-
(Power save)						
ON voltage range	VPSON	_	-	1.0	V	Standby mode
OFF voltage range	VPSOFF	2.5	-	-	v	_
(Hall bias)						
Hall bias voltage	VHB	_	0.9	1.5	V	IHB=10mA
(Hall amplifier)						J
Input bias current	Іна	_	0.0	_	μA	-
Common phase input voltage	VHAR	1.5	-	4.0	V	-
Minimum input level	VINH	50	_	-	mV _{P-P}	-
Hall hysteresis level	VHYS	_	20	-	mV	_
(Torque command)						
Input voltage	Ec, Ecr	0.5	_	3.3	V	_
Offset voltage (+)	Ecof+	20	50	80	mV	_
Offset voltage (-)	Ecof-	-80	-50	-20	mV	_
Input current	ECIN	-3.0	-1.0	_	μA	Ec=Ecr=1.65V
PWM high level control range	VPWMH	_	Ecr+1	-	v	Ecr=1.65V
PWM low level control range	VPWML	_	ECR-1	_	V	Ecr=1.65V
Brake mode switching					1	
ON voltage range	VMODE10N	2.5	-	_	V	Short brake
OFF voltage range	VMODE10FF	_	_	1.0	v	Reverse rotation brake
(Output)						1
Output on resistance	Ron	_	0.7	_	Ω	lo=±600mA
Output limit voltage	VTL	_	0.2	_	V	With R _{NF} =0.33Ω
OSC oscillator>						
Output high level voltage	VHPOSC	_	2.0	_	V	-
Output low level voltage	VLPOSC	_	1.0	_	V	-
Oscillation frequency (reference value)	Fosc	_	100	_	kHz	With $C = 470 pF$
(Voltage booster)						
Charge pump output voltage	VPUMP	_	10	_	V	With $V_M = V_{CC} = 5V$
(FG output switching)						
ON voltage range	VMODE2ON	2.5	-	_	V	Single-phase output
OFF voltage range	VMODE20FF	_	_	1.0	V	Three-phase composite output

Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
<pre>⟨FG output⟩</pre>	〈FG output〉					
Output high level voltage	VFGH	4.6	—	_	v	IFG=-100 μ A
Output low level voltage	VFGL	_	—	0.4	V	IFG=100 μ A
〈FR output〉						
Output high level voltage	Vfrh	4.6	—	-	V	IFR=-100 μ A
Output low level voltage	VFRL	_	—	0.4	v	IFR=100 μ A
〈CP1 output〉						
High level saturation voltage	Vсрін	-	0.5	_	V	ICP1=-7mA
Low level saturation voltage	VCP1L	-	0.5	-	V	ICP1=7mA
〈CP2 output〉						
High level saturation voltage	Vср2н	-	0.5	_	V	IFR=-7mA
Low level saturation voltage	VCP2L	_	0.5	_	V	IFR=7mA

BD6660FV

Application example

Operation notes

(1) Brake mode (MODE1) logic

The brake mode is switched by MODE1 pin and the operation is shown in Table-1 below.

Table-1		
MODE1	Operation	
L	Reverse rotation brake	
Н	Short brake	

(When Ec > Ecr)

(2) MODE2 logic

The FG output is switched by MODE2 pin and the operation is shown in Table-2 below.

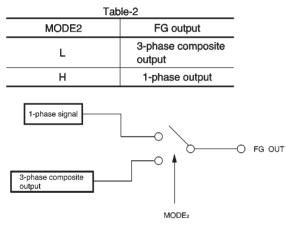
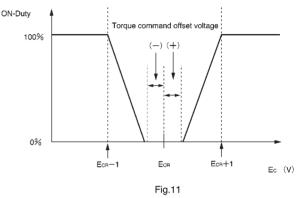
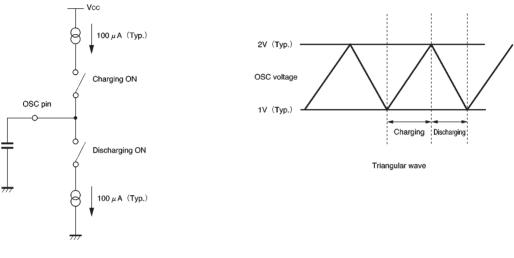



Fig.10

(3) PWM operation

By the voltage potential difference between E_c and E_{CR} , the ON duty when switching the low level output transistor changes as shown in Fig. 11 below. ($E_{CR} = 1.65V$)


(4) Current limiter operation

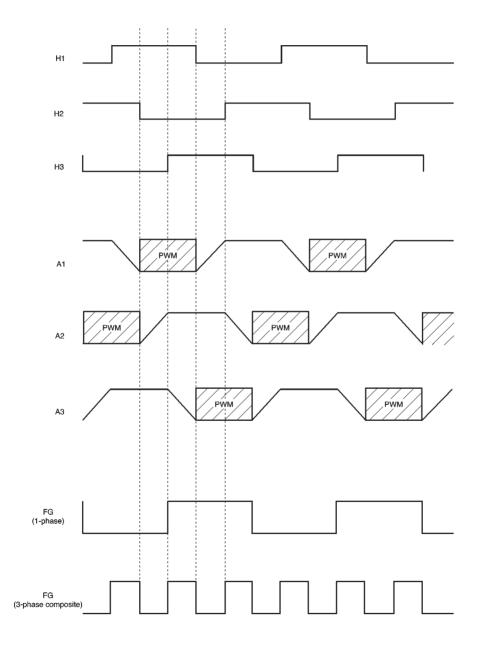
When the R_{NF} voltage becomes 0.2V (Typ.), the current limiter circuit activates and limits the PWM ON duty. At this time the output current I_{omax} is limited to:

Iomax ≒ approx. 0.2 / RNF

(5) OSC oscillator circuit

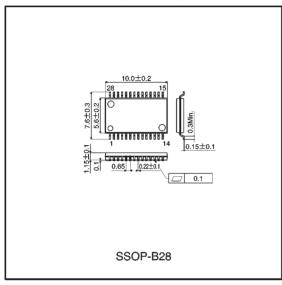
By connecting a capacitor to the OSC pin, the charging and discharging of the capacitor generates a triangular wave as that shown in Fig. 12. (C = 470pF and f = 100kHz (Typ.))

Internal circuit for OSC pin



(6) Charge pump

The boost voltage (V_{PUMP}) is V_M + V_{CC}. Therefore, to prevent (V_M + V_{CC}) from increasing much over ratings, set the V_M and V_{CC} voltages.


BD6660FV

(7) Timing chart

BD6660FV

External dimensions (Units: mm)

