Quad Transparent Latch

The MC14042B Quad Transparent Latch is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each latch has a separate data input, but all four latches share a common clock. The clock polarity (high or low) used to strobe data through the latches can be reversed using the polarity input. Information present at the data input is transferred to outputs Q and \overline{Q} during the clock level which is determined by the polarity input. When the polarity input is in the logic "0" state, data is transferred during the low clock level, and when the polarity input is in the logic "1" state the transfer occurs during the high clock level.

- Buffered Data Inputs
- Common Clock
- Clock Polarity Control
- Q and Q Outputs
- Double Diode Input Protection
- Supply Voltage Range = 3.0 Vdc to 1 8 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or <mark>Transient) per Pin</mark>	±10 M	mA
P _D	Power Dissipation, per Package (Note 3.)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

- Maximum Ratings are those values beyond which damage to the device may occur.
- Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

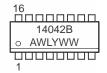
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS



PDIP-16 P SUFFIX CASE 648

SOIC-16 D SUFFIX CASE 751B

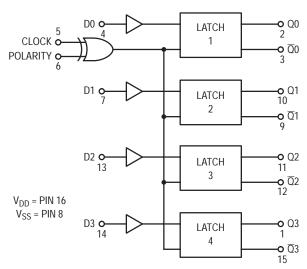
SOEIAJ-16 F SUFFIX CASE 966 A = Assembly Location
WL or L = Wafer Lot
YY or Y = Year

WW or W = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC14042BCP	PDIP-16	2000/Box
MC14042BD	SOIC-16	2400/Box
MC14042BDR2	SOIC-16	2500/Tape & Reel
MC14042BF	SOEIAJ-16	See Note 1.
MC14042BFEL	SOEIAJ-16	See Note 1.
MC14042BFR1	SOEIAJ-16	See Note 1.
MC14042BFR2	SOEIAJ-16	See Note 1.

 For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.


PIN ASSIGNMENT

1•	16	V _{DD}
2	15	_ <u>Q</u> 3
3	14	D3
4	13	D2
5	12	<u>Q</u> 2
6	11	Q2
7	10	Q1
8	9	<u>Q</u> 1
	2 3 4 5 6 7	2 15 3 14 4 13 5 12 6 11 7 10

TRUTH TABLE

Clock	Polarity	Q
0	0	Data
1	0	Latch
1	1	Data
0	1	Latch

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			V _{DD}	- 5	5°C	25°C		125°C	5°C		
Characteristic		Symbol	Vdc	Min	Max	Min	Typ ^(4.)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	V _{IL}	5.0 10 15		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	_ _ _	3.5 7.0 11	2.75 5.50 8.25	_ _ _	3.5 7.0 11	_ _ _	Vdc
Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	Source	I _{OH}	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	_ _ _ _	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	-1.7 -0.36 -0.9 -2.4	_ _ _ _	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4	_ _ _	mAdc
Input Current		l _{in}	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15		1.0 2.0 4.0		0.002 0.004 0.006	1.0 2.0 4.0	_ _ _	30 60 120	μAdc
Total Supply Current (5.) ((1) (Dynamic plus Quiesc Per Package) (C _L = 50 pF on all outple buffers switching)	ent,	I _T	5.0 10 15			$I_{T} = (2$	1.0 μA/kHz) f 2.0 μA/kHz) f 3.0 μA/kHz) f	+ I _{DD} + I _{DD}			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.004.

SWITCHING CHARACTERISTICS (7.) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD}	Min	Тур (8.)	Max	Unit
Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) \text{ C}_{L} + 25 \text{ ns} \\ t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns} \\ t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) \text{ C}_{L} + 9.5 \text{ ns} $	t _{TLH} , t _{THL}	5.0 10 15	_ _ _	100 50 40	200 100 80	ns
Propagation Delay Time, D to Q, \overline{Q} t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 135 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 57 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 35 ns	t _{PLH} , t _{PHL}	5.0 10 15	_ _ _	220 90 60	440 180 120	no
Propagation Delay Time, Clock to Q, \overline{Q} t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 135 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 57 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 35 ns	t _{PLH} , t _{PHL}	5.0 10 15	_ _ _	220 90 60	440 180 120	ns
Clock Pulse Width	t _{WH}	5.0 10 15	300 100 80	150 50 40	_ _ _	ns
Clock Pulse Rise and Fall Time	t _{TLH} , t _{THL}	5.0 10 15	_ _ _	_ _ _	15 5.0 4.0	μs
Hold Time	t _h	5.0 10 15	100 50 40	50 25 20	_ _ _	ns
Setup Time	t _{su}	5.0 10 15	50 30 25	0 0 0		ns

- 7. The formulas given are for the typical characteristics only at 25°C.
 8. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

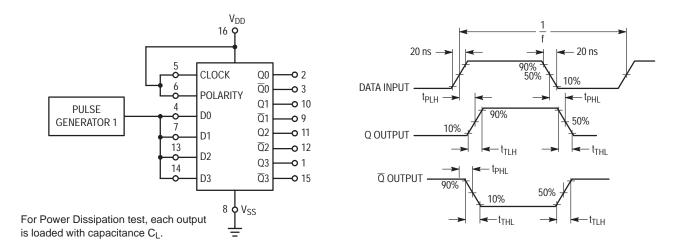
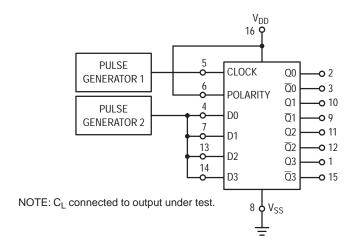
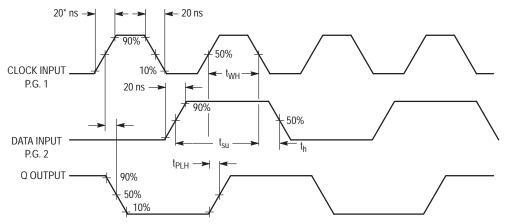
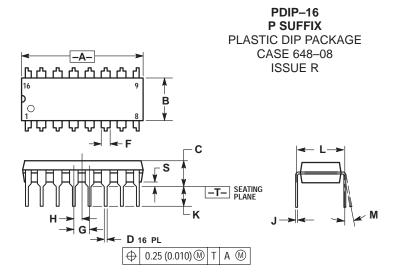




Figure 1. AC and Power Dissipation Test Circuit and Timing Diagram (Data to Output)



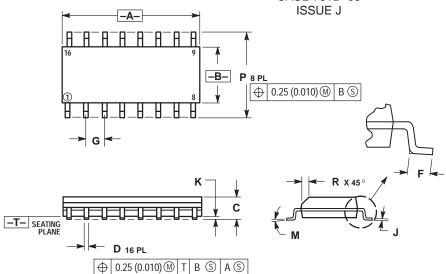
*Input clock rise time is 20 ns except for maximum rise time test.

Figure 2. AC Test Circuit and Timing Diagram (Clock to Output)

PACKAGE DIMENSIONS

- NOTES:

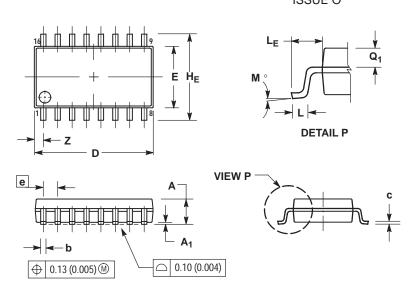

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Н	0.050	BSC	1.27 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10 °	0°	10 °
S	0.020	0.040	0.51	1.01



- NOTES:
 1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED SIGN.
- 4. MAXIMUM MOLID PROTRUSION 0.13 (0.000)
 PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INC	HES
DIM	MIN	MIN MAX		MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

SOEIAJ-16 **F SUFFIX** PLASTIC EIAJ SOIC PACKAGE CASE 966-01 **ISSUE O**

NOTES:

- OTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.00A) PER SIDE.
- OR PROTRUSIONS SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.
 4. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 5. THE LEAD WIDTH DIMENSION (b) DOES NOT
 INCLUDE DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
 TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 DAMBAR CANNOT BE LOCATED ON THE LOWER
 RADIUS OR THE FOOT. MINIMUM SPACE
 BETWEEN PROTRUSIONS AND ADJACENT LEAD
 TO BE 0.46 (0.018).

	MILLIN	METERS	INC	HES
DIM	MIN MAX		MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Ε	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and W are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.