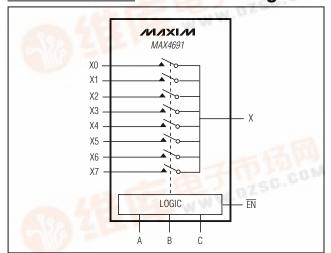
19-1945: Rev 2: 2/03

Low-Voltage 8:1 Mux/Dual 4:1 Mux/Triple SPDT/ **Quad SPDT in UCSP Package**

General Description

The MAX4691-MAX4694 are low-voltage CMOS analog ICs configured as an 8-channel multiplexer (MAX4691), two 4-channel multiplexers (MAX4692), three singlepole/double-throw (SPDT) switches (MAX4693), and four SPDT switches (MAX4694).

The MAX4691/MAX4692/MAX4693 operate from either a single +2V to +11V power supply or dual ±2V to ±5.5V power supplies. When operating from ±5V supplies they offer 25Ω on-resistance (RON), 3.5Ω (max) R_{ON} flatness, and 3Ω (max) matching between channels. The MAX4694 operates from a single +2V to +11V supply. Each switch has Rail-to-Rail® signal handling and a low 1nA leakage current.


All digital inputs are 1.8V logic-compatible when operating from a +3V supply and TTL compatible when operating from a +5V supply.

The MAX4691-MAX4694 are available in 16-pin, 4mm × 4mm QFN and 16-bump UCSP packages. The chip-scale package (UCSP™) occupies a 2mm x 2mm area, significantly reducing the required PC board area.

Applications

Audio and Video Signal Routing Cellular Phones **Battery-Operated Equipment** Communications Circuits Modems

Functional Diagrams

Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. UCSP is a trademark of Maxim Integrated Products, Inc.

Features

- ♦ 16 bump, 0.5mm-Pitch UCSP (2mm x 2mm)
- ♦ 1.8V Logic Compatibility
- ♦ Guaranteed On-Resistance 70 Ω (max) with +2.7V Supply 35 Ω (max) with +5V Supply 25 Ω (max) with ±4.5V Dual Supplies
- **♦** Guaranteed Match Between Channels 5Ω (max) with +2.7V Supply 3 Ω (max) with ±4.5V Dual Supplies
- ♦ Guaranteed Flatness Over Signal Range 3.5 Ω (max) with ±4.5V Dual Supplies
- ♦ Low Leakage Currents Over Temperature 20nA (max) at +85°C
- ♦ Fast 90ns Transition Time
- ♦ Guaranteed Break-Before-Make
- ♦ Single-Supply Operation from +2V to +11V
- Dual-Supply Operation from ±2V to ±5.5V (MAX4691/MAX4692/MAX4693)
- ♦ V+ to V- Signal Handling
- ♦ Low Crosstalk: -90dB (100kHz)
- High Off-Isolation: -88dB (100kHz)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE
MAX4691EBE-T	-40°C to +85°C	16-Bump UCSP*
MAX4691EGE	-40°C to +85°C	16 QFN
MAX4692EBE-T	-40°C to +85°C	16-Bump UCSP*
MAX4692EGE	-40°C to +85°C	16 QFN
MAX4693EBE-T	-40°C to +85°C	16-Bump UCSP*
MAX4693EGE	-40°C to +85°C	16 QFN
MAX4694EBE-T	-40°C to +85°C	16-Bump UCSP*
MAX4694EGE	-40°C to +85°C	16 QFN

*Requires special solder temperature profile described in the Absolute Maximum Ratings section.

*UCSP reliability is integrally linked to the user's assembly methods, circuit board, and environment. See the UCSP Reliability Notice in the UCSP Reliability section for information.

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V+ to GND0.3V to +12V
V+ to V- (MAX4691/MAX4692/MAX4693)0.3V to +12V
Voltage into any Terminal (Note 1) (V 0.3V) to (V+ + 0.3V)
Continuous Current into any Terminal ±20mA
Peak Current W_, X_, Y_, Z_ (pulsed at 1ms,
10% duty cycle)±40mA
ESD per Method 3015.7>2kV
Continuous Power Dissipation (T _A = +70°C)
16-Bump UCSP (derate 8.3mW/°C above +70°C) 659mW
16-Pin QFN (derate 18.5mW/°C above +70°C) 1481mW

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering)	
16-Bump UCSP (Note 2) Infrared (15s)	+220°C
Vapor Phase (60s)	+215°C
16-Pin QFN	+300°C

- **Note 1:** Voltages exceeding V+ or V- on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.
- Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+ = +2.7V \text{ to } +3.6V, V- = 0, V_{IH} = +1.4V, V_{IL} = +0.4V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C}$.) (Notes 3, 4, 5)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH	•						
Analog Signal Range	V _W , V _X , V _Y , V _Z , V _W _, V _X _, V _Y _, V _Z _		-40°C to +85°C	0		V+	V
On Registenes (Note 6)	Davi	$V + = 2.7V$; I_W , I_X , I_Y , $I_Z = 1mA$	+25°C		45	70	0
On-Resistance (Note 6)	Ron	$V_{W_{-}}, V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 1.5V$	-40°C to +85°C			80	Ω
On-Resistance Match	AD	V+ = 2.7V; lw, lx, ly, lz = 1mA	+25°C		2	5	
Between Channels (Notes 6, 7)	ΔR_{ON} $V_{W_{-}}, V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 1.5V$	-40°C to +85°C			6	Ω	
W , X , Y , Z Off-Leakage	lw ly	V+ = 3.6V; V _W , V _X , V _Y , V _Z = 3V, 0.6V; V _W , V _X , V _Y , V _Z = 0.6V, 3V	+25°C	-1		1	
Current (Note 9)			-40°C to +85°C	-10		10	nA
W, X, Y, Z Off-Leakage	lw(OFF),	$V + = 3.6V$; V_W , V_X , V_Y , $V_Z = 3V$,	+25°C	-2		2	nA
Current (Note 9)	ly(OFF), lz(OFF)	I _{Y(OFF)} , 3V	-40°C to +85°C	-20		20	IIA
W, X, Y, Z On-Leakage Current (Note 9)	I _{W(ON)} , I _{X(ON)} ,	$V + = 3.6V$; V_W , V_X , V_Y , $V_Z = 0.6V$,	+25°C	-2		2	A
	l _{Y(ON)} , l _{Z(ON)}	Y(ON), or floating	-40°C to +85°C	-20		20	nA

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+=+2.7V \text{ to } +3.6V, V-=0, V_{IH}=+1.4V, V_{IL}=+0.4V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A=+25^{\circ}\text{C}$.) (Notes 3, 4, 5)

PARAMETER	SYMBOL	COND	ITIONS	TA	MIN	TYP	MAX	UNITS
Input Off-Capacitance	CW_(OFF), CX_(OFF), CY_(OFF), CZ_(OFF)	f = 1MHz, Figure	e 7	+25°C		9		pF
	C _{X(OFF)} ,	£ 40411-	MAX4691			68		
Output Off-Capacitance	C _{Y(OFF)} ,	f = 1MHz, Figure 7	MAX4692	+25°C		36		pF
	C _Z (OFF)	ga. o .	MAX4693			20		
	C _{W(ON)} ,		MAX4691			78		<u> </u>
On-Capacitance	C _X (ON),	f = 1MHz,	MAX4692	+25°C		46		pF
	C _{Y(ON)} , C _{Z(ON)}	Figure 7	MAX4693			30		
DYNAMIC	'							•
Enable Turn-On Time		Vw_, Vx_, Vy_, \	/ _{7_} = 1.5V;	+25°C		180	300	
(MAX4691/MAX4692/ MAX4693)	ton	$R_L = 300\Omega, C_L =$	35pF, Figure 2	-40°C to +85°C			350	ns
Enable Turn-Off Time		Vw_, Vx_, Vy_, V	/z = 1.5V·	+25°C		70	100	
(MAX4691/MAX4692/ MAX4693)	tOFF	$R_L = 300\Omega$, $C_L = 35pF$, Figure 7.		-40°C to +85°C			120	ns
Address Transition Time	tTDANG.	$V_{W}, V_{X}, V_{Y}, V_{Z} = 0, 1.5V;$ $R_L = 300\Omega, C_L = 35pF, Figure 3$		+25°C		200	350	ns
Address Hansillon Time	ttrans			-40°C to +85°C			400	115
Break-Before-Make	t _{BBM}	V _W _, V _X _, V _Y _, \		+25°C	2	90		ns
Break Before Make	1DDIVI	$R_L = 300\Omega$, $C_L =$	= 35pF, Figure 4	-40°C to +85°C	2			113
Charge Injection	Q	V _{GEN} = 0; R _{GEN} Figure 5	$= 0; C_L = 1nF,$	+25°C		0.1		рС
Off-Isolation (Note 10)	Viso	f = 0.1MHz, R _L = Figure 6	= 50Ω , $C_L = 5pF$,	+25°C		-70		dB
Crosstalk (Note 11)	V _{CT}	f = 0.1MHz, R _L = Figure 6	= 50Ω , $C_L = 5pF$,	+25°C		-75		dB
DIGITAL I/O	•							
Input Logic High	VIH		_		1.4		•	V
Input Logic Low	V _{IL}						0.4	V
Input Leakage Current	I _{IN}	V _A , V _B , V _C , V _{EN}	ī = 0 or V+		-1		+1	μΑ
SUPPLY	T	T						1
Positive Supply Current	l+	$V+ = 3.6V, V_A, V_A$	V_B , V_C , $V_{\overline{EN}} = 0$	+25°C			0.1	μΑ
	or	or V+		-40°C to +85°C			1	P

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+=+4.5V \text{ to } +5.5V, V-=0, V_{IH}=+2V, V_{IL}=+0.8V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A=+25^{\circ}\text{C}$.) (Notes 3, 4, 5)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _W , V _X , V _Y , V _Z , V _{W_} , V _{X_} , V _{Y_} , V _{Z_}		-40°C to +85°C	0		V+	V
On-Resistance (Note 6)	Ron	$V+ = 4.5V$; I_W , I_X , I_Y , $I_Z = 1mA$;	+25°C		25	35	Ω
On-nesistance (Note o)	HON	$V_{W_{-}}, V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 3.5V$	-40°C to +85°C			40	32
On-Resistance Match Between Channels	ΔR _{ON}	V+ = 4.5V; I _W , I _X , I _Y , I _Z = 1mA;	+25°C		2	4	Ω
(Notes 6, 7)	<u> </u>	$V_{W_{-}}, V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 3.5V$	-40°C to +85°C			5	
On-Resistance Flatness	R _{FLAT} (ON)	V+ = 4.5V; I _W , I _X , I _Y , I _Z = 1mA; V _W , V _X , V _Y , V _Z = 1V, 2.25V,	+25°C		2	6	Ω
(Note 8)	TIPLAT(ON)	3.5V	-40°C to +85°C			8	32
W_, X_ , Y_, Z_ Off-Leakage	Ι _W _, Ιχ_,	V+ = 5.5V; V _W , V _X , V _Y , V _Z = 4.5V, 1V_; V _W , V _X , V _Y , V _Z = 1V, 4.5V	+25°C	-1		1	nA
Current (Note 9)	Ι _Υ _, Ι _Ζ _		-40°C to +85°C	-10		10	IIA
W, X, Y, Z Off-Leakage	lw(OFF), lx (OFF), ly(OFF), lz(OFF)	V+ = 5.5V; VW, VX, VY, Vz = 4.5V, 1V_; VW_, VX_, VY_, Vz = 1V 4.5V	+25°C	-2		2	n A
Current (Note 9)			-40°C to +85°C	-20		20	IIA
W, X, Y, Z On-Leakage	lw(on), lx(on),	. I V + - J.J V. V VV. V X. V Y. V / - I V. I		-2		2	nA
Current (Note 9)	I _{Y(ON)} , I _{Z(ON)}	4.5V, or floating	-40°C to +85°C	-20		20	IIA
DYNAMIC	T		, ,				
Enable Turn-On Time	ton	$V_{W_{-}}, V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 3V; R_{L} =$	+25°C		90	130	ns
(MAX4691/MAX4692/MAX4693)	-511	300Ω , C _L = 35pF, Figure 2	-40°C to +85°C			150	
Enable Turn-Off Time	toff	$V_{W_{-}}, V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 3V; R_{L} =$	+25°C		45	60	ns
(MAX4691/MAX4692/MAX4693)		300Ω , C _L = 35pF, Figure 2	-40°C to +85°C		400	70	
Address Transition Time	ttrans	$V_{W_{-}}, V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 0, 3V;$ $R_{L} = 300\Omega, C_{L} = 35pF,$ Figure 3	+25°C -40°C to +85°C		100	140	ns
Break-Before-Make	t _{BBM}	V _W _,V _X _, V _Y _, V _Z _ = 3V; R _L = 300Ω, C _L = 35pF, Figure 4	+25°C -40°C to +85°C	2	35		ns
Charge Injection	Q	$V_{GEN} = 0$; $R_{GEN} = 0$; $C_L = 1nF$, Figure 5	+25°C		0.2		рС

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V+=+4.5V \text{ to } +5.5V, V-=0, V_{IH}=+2V, V_{IL}=+0.8V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A=+25^{\circ}\text{C}$.) (Notes 3, 4, 5)

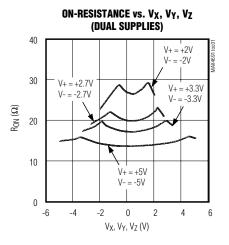
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Off-Isolation (Note 10)	V _{ISO}	$f = 0.1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 6	+25°C		-80		dB
Crosstalk (Note 11)	VCT	$f = 0.1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 6	+25°C		-87		dB
DIGITAL I/O							
Input Logic High	VIH			2			V
Input Logic Low	VIL					8.0	V
Input Leakage Current	I _{IN}	V_A , V_B , V_C , $V_{\overline{EN}} = 0$ or V_+		-1		+1	μΑ
SUPPLY							
Positive Supply Current	-	$V + = 5.5V$; V_A , V_B , V_C , $V_{\overline{EN}} = 0$	+25°C			0.1	μA
	1+	or V+	-40°C to +85°C			1	μА

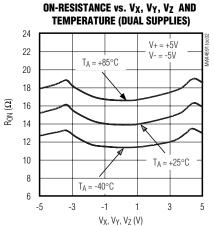
ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies (MAX4691/MAX4692/MAX4693 only)

 $(V+ = +4.5V \text{ to } +5.5V, V- = -4.5V \text{ to } -5.5V, V_{IH} = +2V, V_{IL} = +0.8V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Notes 3, 4, 5)

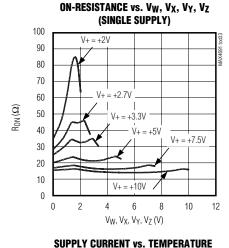
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _X , V _Y , V _Z , V _X _, V _Y _, V _Z _		-40°C to +85°C	V-		V+	V
On-Resistance (Note 6)	Ron	$V+ = 4.5V; I_X, I_Y, I_Z = 10mA;$	+25°C		18	25	Ω
On-nesistance (Note 6)	HOM	$V- = -4.5V$; V_{X} , V_{Y} , $V_{Z} = 3.5V$	-40°C to +85°C			30	52
On-Resistance Match Between Channels	APou	V+ = 4.5V; V- = -4.5V; Ix, Iy, Iz =	+25°C		2	3	Ω
(Notes 6, 7)	ΔR _{ON}	10mA; V_{X} , V_{Y} , $V_{Z} = 3.5V$	-40°C to +85°C			4	
On-Resistance Flatness	Dei versioni	0.517	+25°C		2.5	3.5	Ω
(Note 8)	R _{FLAT} (ON)		-40°C to +85°C			4	22
X_, Y_, Z_ Off-Leakage	lχ_,	V+ = 5.5V; V- = -5.5V; V _X , V _Y , V _Z	+25°C	-1		1	nA
Current (Note 9)	Ιγ <u>_</u> , Ι <u></u>	$= +4.5V$; V_{X} , V_{Y} , $V_{Z} = \pm 4.5V$	-40°C to +85°C	-10		10	IIA
X, Y, Z Off-Leakage Current	IX (OFF),	$V+ = 5.5V$; $V- = -5.5V$; V_X , V_Y ,	+25°C	-2		2	
(Note 9)	l _{Y(OFF)} , l _{Z(OFF)}	$V_Z = +4.5V$; V_{X} , V_{Y} , $V_{Z} = \pm4.5V$	-40°C to +85°C	-20		20	nA

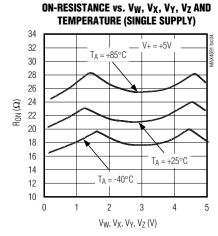
ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies (continued) (MAX4691/MAX4692/MAX4693 only)

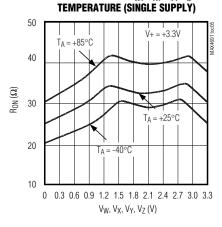

 $(V+ = +4.5V \text{ to } +5.5V, V- = -4.5V \text{ to } -5.5V, V_{IH} = +2V, V_{IL} = +0.8V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Notes 3, 4, 5)

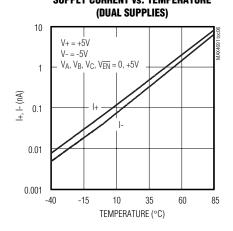

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
X, Y, Z On-Leakage Current	I _{X(ON)} , I _{Y(ON)} ,	V+ = 5.5V; V- = -5.5V; V _X , V _Y , V _Z = ±4.5V;	+25°C	-2		2	nA
(Note 9)	I _Z (ON)	V_{X} , V_{Y} , $V_{Z} = \pm 4.5V$, or floating	-40°C to +85°C	-20		20	117 (
DYNAMIC							
Enable Turn-On Time	ton	$V_{X}, V_{Y}, V_{Z} = 3V; R_L = 300\Omega,$	+25°C		55	80	ns
Litable fulli-Off fillie	ιΟΝ	C _L = 35pF, Figure 2	-40°C to +85°C			90	115
Enable Turn-Off Time	toff	V _Z , V _Y , V _Z = 3V; R _L = 300Ω,	+25°C		35	50	ns
Enable full Oil fillic	ıOFF	C _L = 35pF, Figure 2	-40°C to +85°C			60	113
		V _X _, V _Y _, V _Z _ = 0, 3V;	+25°C		60	90	
Address Transition Time	ttrans	$R_L = 300\Omega$, $C_L = 35pF$, Figure 3	-40°C to +85°C			100	ns
Break-Before-Make	t _{BBM}	V_{X} , V_{Y} , V_{Z} = 3V; R_L = 300 Ω , C_L = 35pF, Figure 4	+25°C	2	20		ns
Dieak-Deiole-Make			-40°C to +85°C	2			113
Charge Injection	Q	$V_{GEN} = 0$; R $_{GEN} = 0$; $C_L = 1$ nF, Figure 5	+25°C		1.8		рС
Off-Isolation (Note 10)	V _{ISO}	$\begin{split} f &= 0.1 \text{MHz}, \text{R}_{\text{L}} = 50 \Omega, \\ \text{C}_{\text{L}} &= 5 \text{pF}, \text{Figure 6} \end{split}$	+25°C		-82		dB
Crosstalk (Note 11)	VCT	$f = 0.1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 7	+25°C		-84		dB
Total Harmonic Distortion	THD	$ f = 20 \text{Hz to } 20 \text{kHz, } V_X, V_Y, V_Z = \\ 5 \text{Vp-p; } R_L = 600 \Omega, $	+25°C		0.02		%
DIGITAL I/O							
Input Logic High	VIH			2			V
Input Logic Low	V _{IL}					0.8	V
Input Leakage Current	I _{IN}	V_A , V_B , V_C , $V_{\overline{EN}} = 0$ or V_+		-1		+1	μΑ
SUPPLY							
Positive Supply Current	l+	V+ = 5.5V; V- = 5.5V;	+25°C			0.1	μΑ
T Solito Supply Surform	V	V_A , V_B , V_C , $V_{\overline{EN}} = 0$ or V_+	-40°C to +85°C			1	μ

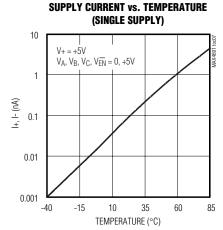
- **Note 3:** The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
- **Note 4:** UCSP parts are 100% tested at $T_A = +25$ °C. Limits across the full temperature range are guaranteed by correlation.
- **Note 5:** QFN parts are 100% tested at $T_A = +85^{\circ}C$. Limits across the full temperature range are guaranteed by correlation.
- Note 6: UCSP RON and RON match are guaranteed by design.
- **Note 7:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 8:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 9: Leakage parameters are guaranteed by design.
- $\textbf{Note 10:} \ Off-isolation = 20 \\ log_{10} \ (V_{W,X,Y,Z} \ / \ V_{W,X,Y,Z}), \ V_{W,X,Y,Z} = output, \ V_{W,X,Y,Z} = input \ to \ off \ switch.$
- Note 11: Between any two switches.

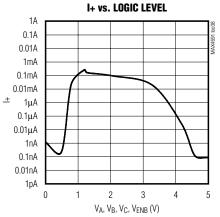

Typical Operating Characteristics

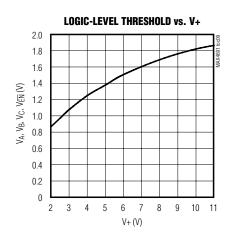

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

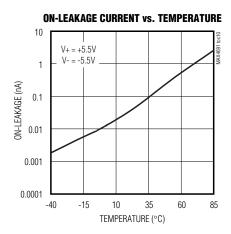


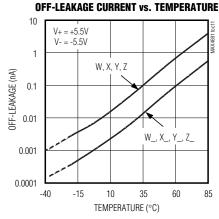


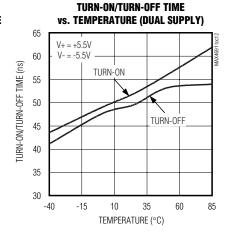

ON-RESISTANCE vs. $V_W,\,V_X,\,V_Y,\,V_Z$ and

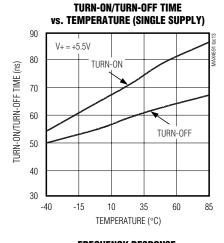


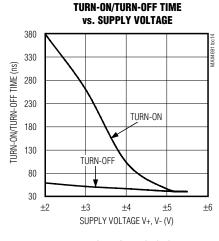


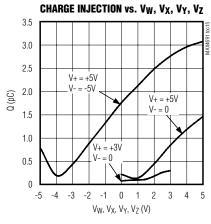


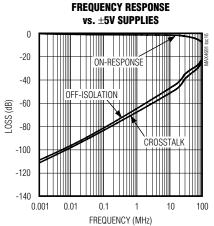


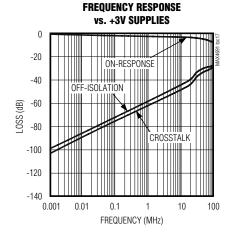


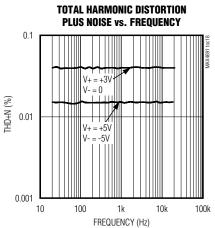

Typical Operating Characteristics (continued)


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$









Pin Description

MAX4691

PI	PIN		FUNCTION
UCSP	QFN	NAME	FUNCTION
A4, B4, C4, D4, A1, B1, C1, D1	16, 1, 3, 4, 12, 11, 9, 8	X0-X7	Analog Switch Inputs 0–7
A2	13	Χ	Analog Switch Common
D3, D2, A3	5, 7, 15	A, B, C	Digital Address Inputs
B2	14	V-	Negative Analog Supply Voltage Input. Connect to GND for single-supply operation.
В3	2	GND	Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to V+ and V)
C2	10	ĒN	Digital Enable Input. Normally connect to GND. Can be driven to logic high to set all switches off.
СЗ	6	V+	Positive Analog and Digital Supply Voltage Input

MAX4692

PII	N	NAME	FUNCTION
UCSP	QFN	NAME	FUNCTION
A1, B1, C1, D1	12, 11, 9, 8	X0-X3	Analog Switch "X" Inputs 0-3
A4, B4, C4, D4	16, 1, 3, 4	Y0-Y3	Analog Switch "Y" Inputs 0-3
A2	13	Χ	Analog Switch "X" Common
А3	15	Υ	Analog Switch "Y" Common
D3, D2	5, 7	A, B	Digital Address Inputs for both "X" and "Y" Analog Switches
B2	14	V-	Negative Analog Supply Voltage Input. Connect to GND for single-supply operation.
В3	2	GND	Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to V+ and V)
C2	10	ĒN	Digital Enable Input. Normally connect to GND. Can be driven to logic high to set all switches off.
C3	6	V+	Positive Analog and Digital Supply Voltage Input

Pin Description (continued)

MAX4693

Р	PIN				FUNCTION
UCSP	QFN	NAME	FUNCTION		
A1	12	X0	Analog Switch "X" Normally Closed Input		
B1	11	X1	Analog Switch "X" Normally Open Input		
A4	16	Y0	Analog Switch "Y" Normally Closed Input		
B4	1	Y1	Analog Switch "Y" Normally Open Input		
D1	8	Z0	Analog Switch "Z" Normally Closed Input		
C1	9	Z1	Analog Switch "Z" Normally Open Input		
A2	13	Х	Analog Switch "X" Common		
А3	15	Υ	Analog Switch "Y" Common		
D2	7	Z	Analog Switch "Z" Common		
C4	3	А	Analog Switch "X" Digital Control Input		
D4	4	В	Analog Switch "Y" Digital Control Input		
D3	5	С	Analog Switch "Z" Digital Control Input		
B2	14	V-	Negative Analog Supply Voltage Input. Connect to GND for single-supply operation.		
В3	2	GND	Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to V+ and V)		
C2	10	ĒN	Digital Enable Input. Normally connect to GND. Can be driven to logic high to set all switches off.		
C3	6	V+	Positive Analog and Digital Supply Voltage Input		

Pin Description (continued)

MAX4694

PII	PIN		FUNCTION						
USCP	QFN	NAME	FUNCTION						
D4	4	WO	Analog Switch "W" Normally Closed Input						
C4	3	W1	Analog Switch "W" Normally Open Input						
A1	12	X0	Analog Switch "X" Normally Closed Input						
B1	11	X1	Analog Switch "X" Normally Open Input						
A4	16	Y0	Analog Switch "Y" Normally Closed Input						
B4	1	Y1	Analog Switch "Y" Normally Open Input						
D1	8	Z0	Analog Switch "Z" Normally Closed Input						
C1	9	Z1	Analog Switch "Z" Normally Open Input						
D3	5	W	Analog Switch "W" Common						
A2	13	Х	Analog Switch "X" Common						
АЗ	15	Υ	Analog Switch "Y" Common						
D2	7	Z	Analog Switch "Z" Common						
B2	14	GND	Ground						
B3	2	А	Analog Switch "W" and "Y" Digital Control Input						
C2	10	В	Analog Switch "X" and "Z" Digital Control Input						
C3	6	V+	Positive Analog and Digital Supply Voltage Input						

Table 1. Truth Table/Switch Programming

==-1	ADI	DRESS	BITS		ON S	SWITCHES	
EN ¹	C ²	В	Α	MAX4691	MAX4692	MAX4693	MAX4694
1	Χ	Χ	Х	All switches open	All switches open	All switches open	_
0	0	0	0	X-X0	X-X0, Y-Y0	X-X0, Y-Y0, Z-Z0	W-W0, X-X0, Y-Y0, Z-Z0
0	0	0	1	X-X1	X-X1, Y-Y1	X-X1, Y-Y0, Z-Z0	W-W1, X-X0, Y-Y1, Z-Z0
0	0	1	0	X-X2	X-X2, Y-Y2	X-X0, Y-Y1, Z-Z0	W-W0, X-X1, Y-Y0, Z-Z1
0	0	1	1	X-X3	X-X3, Y-Y3	X-X1, Y-Y1, Z-Z0	W-W1, X-X1, Y-Y1, Z-Z1
0	1	0	0	X-X4	X-X0, Y-Y0	X-X0, Y-Y0, Z-Z1	W-W0, X-X0, Y-Y0, Z-Z0
0	1	0	1	X-X5	X-X1, Y-Y1	X-X1, Y-Y0, Z-Z1	W-W1, X-X0, Y-Y1, Z-Z0
0	1	1	0	X-X6	X-X2, Y-Y2	X-X0, Y-Y1, Z-Z1	W-W0, X-X1, Y-Y0, Z-Z1
0	1	1	1	X-X7	X-X3, Y-Y3	X-X1, Y-Y1, Z-Z1	W-W1, X-X1, Y-Y1, Z-Z1

X = Don't care

Detailed Description

The MAX4691–MAX4694 are low-voltage CMOS analog ICs configured as an 8-channel multiplexer (MAX4691), two 4-channel multiplexers (MAX4692), three SPDT switches (MAX4693), and four SPDT switches (MAX4694). All switches are bidirectional.

The MAX4691/MAX4692/MAX4693 operate from either a single +2V to +11V power supply or dual ± 2 V to ± 5.5 V power supplies. When operating from ± 5 V supplies they offer 25Ω on-resistance (RON), 3.5Ω max RON flatness, and 3Ω max matching between channels. The MAX4694 operates from a single +2V to +11V supply. Each switch has rail-to-rail signal handling, fast switching times of toN = 80ns, toFF = 50ns, and a low 1nA leakage current.

All digital inputs are 1.8V logic-compatible when operating from a +3V supply and TTL-compatible when operating from a +5V supply.

Digital Inputs

The MAX4691 and MAX4692 include address pins that allow control of the multiplexers. For the MAX4691, pins

A, B, C determine which switch is closed. The two 4-1 muxes in the MAX4692 are controlled by the same address pins (A and B). (Table 1)

The MAX4693 and MAX4694 offer SPDT switches in triple and quadruple packages. In the MAX4693, each switch has a unique control input. The MAX4694 has two digital control inputs: A (for switches "W" and "Y") and B (for switches "X" and "Z"). (Table 1)

Applications Information

Power-Supply Considerations

Overview

The MAX4691–MAX4694 construction is typical of most CMOS analog switches. V+ and V-* are used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESD-protection diodes are internally connected between each analog signal pin and both V+ and V-. If any analog signal exceeds V+ or V-, one of these diodes will conduct.

*V- is found only on the MAX4691/MAX4692/MAX4693.

^{1.} EN is not present on the MAX4694.

^{2.} C is not present on the MAX4692 and MAX4694.

During normal operation, these (and other) reversebiased ESD diodes leak, forming the only current drawn from V+ or V-.

Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical, and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or V- and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V+ and V- pins constitutes the analog signal path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of either the same or opposite polarity.

V+ and GND power the internal logic and logic-level translators, and set both the input and output logic limits. The logic-level translators convert the logic levels into switched V+ and V- signals to drive the gates of the analog signals. This drive signal is the only connection between the logic supplies (and signals) and the analog supplies. V+ and V- have ESD-protection diodes on GND.

Bipolar Supplies

The MAX4691/MAX4692/MAX4693 operate with bipolar supplies between ±2V and ±5.5V. The V+ and V- supplies need not be symmetrical, but their difference cannot exceed the absolute maximum rating of +12V.

Single Supply

These devices operate from a single supply between +2V and +11V when V- is connected to GND. All of the bipolar precautions must be observed. At room temperature, they operate with a single supply at near or below +2V, although as supply voltage decreases, switch on-resistance and switching times become very high.

Always bypass supplies with a 0.1µF capacitor.

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs and by W, X, Y, Z. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1).

Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is

unchanged, and the difference between V+ and V-should not exceed 12V. These protection diodes are not recommended when using a single supply if signal levels must extend to ground.

UCSP Reliability

The chip-scale package (UCSP) represents a unique package that greatly reduces board space compared to other packages. UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering a UCSP. Performance through Operating Life Test and Moisture Resistance is equal to conventional package technology as it is primarily determined by the wafer-fabrication process. However, this form factor may not perform equally to a packaged product through traditional mechanical reliability tests.

Mechanical stress performance is a greater consideration for a UCSP. UCSP solder joint contact integrity must be considered since the package is attached through direct solder contact to the user's PC board. Testing done to characterize the UCSP reliability performance shows that it is capable of performing reliably through environmental stresses. Results of environmental stress tests and additional usage data and recommendations are detailed in the UCSP application note, which can be found on Maxim's website, at www.maxim-ic.com.

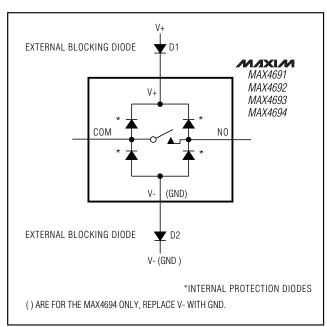


Figure 1. Overvoltage Protection

Test Circuits/Timing Diagrams

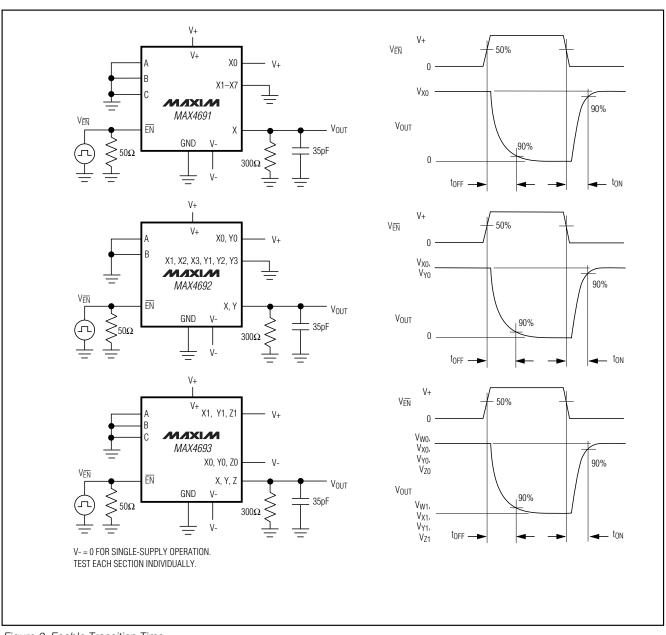


Figure 2. Enable Transition Time

Test Circuits/Timing Diagrams (continued)

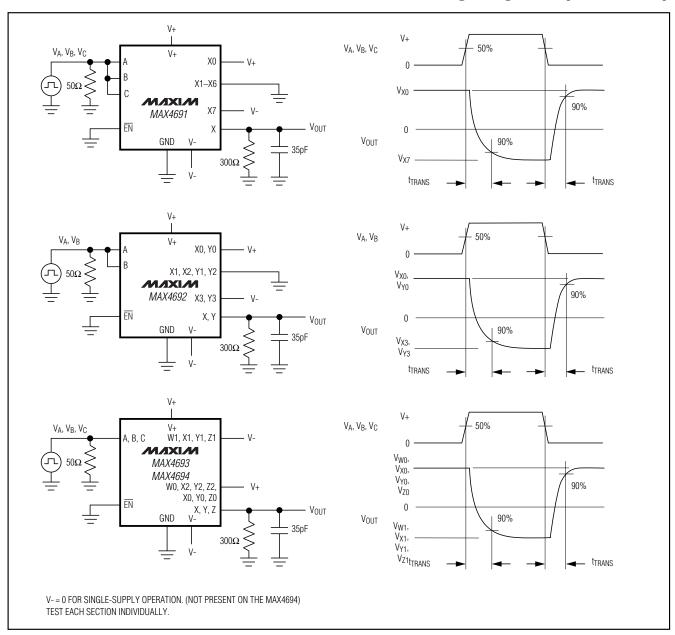


Figure 3. Address Transition Time

Test Circuits/Timing Diagrams (continued)

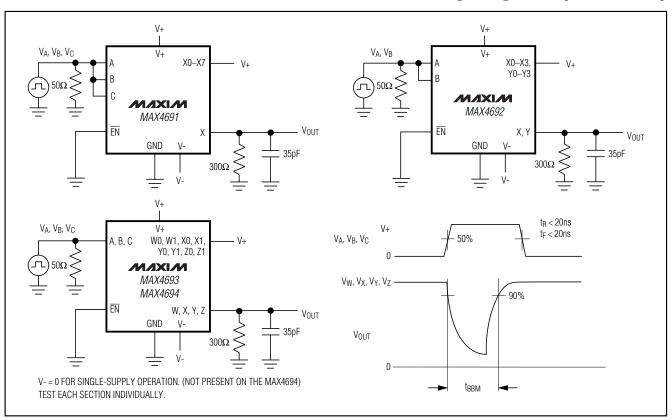


Figure 4. Break-Before-Make Interval

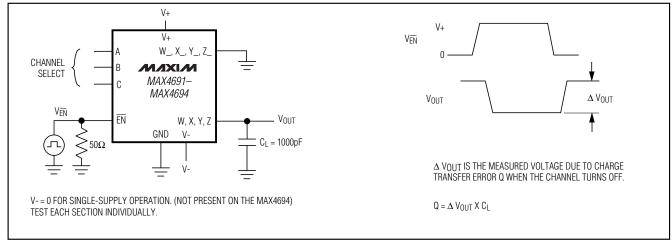


Figure 5. Charge Injection

Test Circuits/Timing Diagrams (continued)

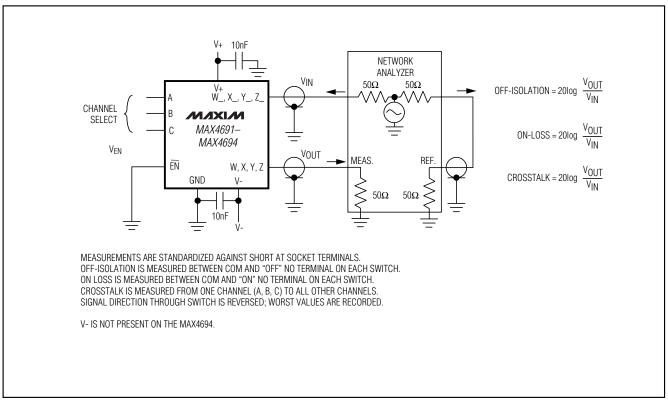


Figure 6. Off-Isolation, On-Loss, and Crosstalk

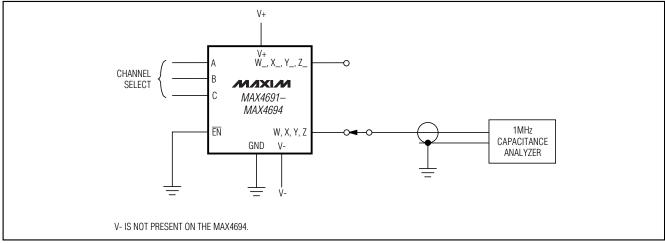
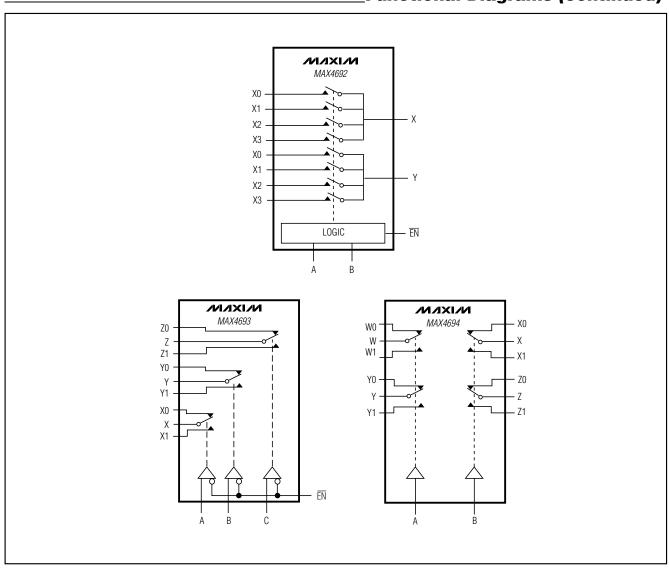
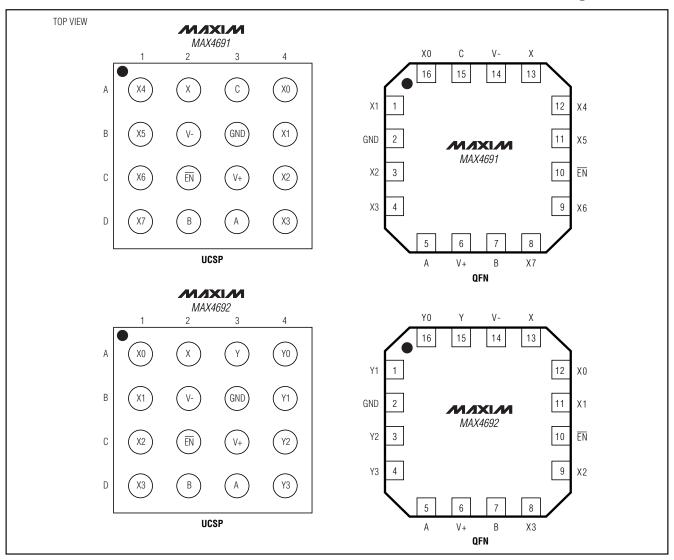
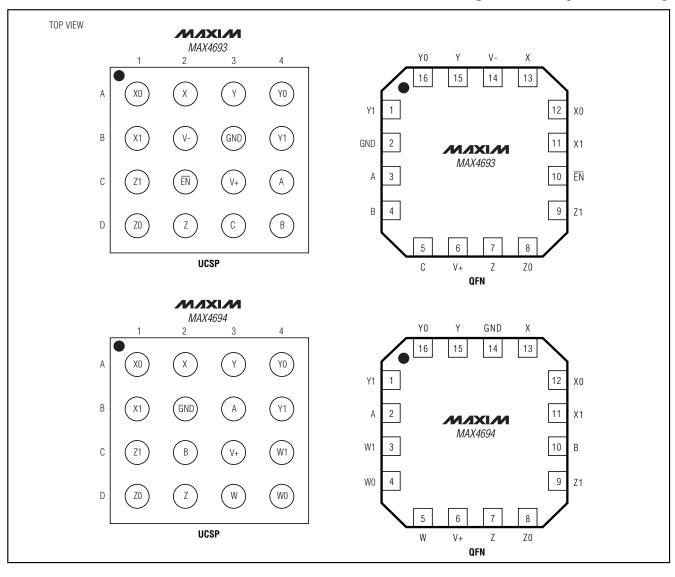



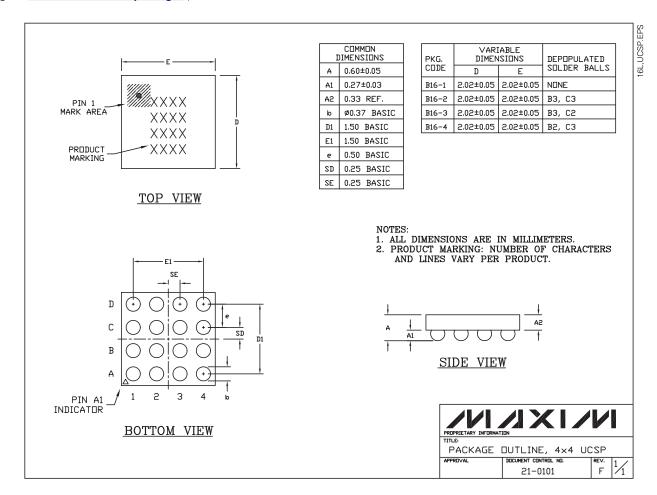
Figure 7. Capacitance


Functional Diagrams (continued)

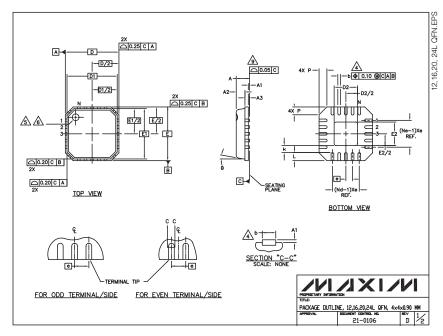

_Chip Information

TRANSISTOR COUNT: 292

Pin Configurations


Pin Configurations (continued)

20 ______/VI/XI/VI


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

					C	NOMMC	DIMENSI	ONS												
PKG	1	2L 4×4		10	6L 4×4		20L 4x4			24L 4x4			1							
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	1							
A	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00	١.							
A1	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05] [FXPI	1SED	PA1	n v	ARIA	TTIN:	2
A2	0.00 0.65 0.80 0.00 0.65 0.80			0.00 0.65 0.80			0.00 0.65 0.80			l			DS.		E2					
A3	0.20 REF		0.20 REF		0.20 REF		0.20 REF			.	PKG. CODES			MAX.			MA			
b	0.28	0.33	0.40	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.30	l I	G1244-2	1.95	2.10	2.25	1.95	2.10	2.2
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	l ŀ	G1644-1	1.95	2.10	2.25	1.95	2.10	2.2
D1	-	3.75 BS0			3.75 BS0		3.75 BSC		_	3.75 BSC		łŀ	G2044-3	1.95	2.10	2.25	1.95	2.10	2.2	
E		4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	łŀ	G2044-4			1.85			1.8
E1	3.75 BSC 0.80 BSC			_	3.75 BSC 0.65 BSC		3.75 BSC 0.50 BSC		3.75 BSC 0.50 BSC			łŀ	G2444-1	1.55	1.70		1.55	1.70	2.2	
e k	0.25	- 00	<u> </u>	0.25	- 0.00	_	0.25	- 0.30	l –	0.25	U.SU BSI	<u> </u>	1	G2444-2	1.95	2.10	2.25	1.95	2.10	-
Ĺ	0.50	0.60	0.75	0.50	0.60	0.75	0.50	0.60	0.75	0.30	0.40	0.55	L	UC444-C	2.45	2.60	2.75	2.45	2.60	2.7
N	0.00	12	0.70	0.00	16	0.70	0.00	20	0.70	0.00	24	0.00								
ND	3 4					5			6			1								
NE		3			4			5			6		1							
Р	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60	1							
9	0.	-	12*	0.		401	0.	_	12*	0.										
IOTES	٠.			U	_	12*		_	12	0		12'	J							
2. DIN 33. N Nd No A. DIN BE	THICK ENSION IS THE IS TH IS TH IENSION TWEEN E PIN	NUMBEI E NUMBI E NUMBI E NUMBI N b APP 0.20 AP	TOLERAL R OF TI ER OF T ER OF T LIES TO LIES TO TIFIER I	LE IS O. RCES CO ERMINALS FERMINAL FERMINAL O PLATEI FRIMM FRIMM MUST BE	ONFORM 3. LS IN X- LS IN Y- D TERMIN DM TERM EXISTE	MAXIMUI MUST TO DIRECTIO DIRECTIO IAL AND INAL TIP O ON TH	M (.012 ASME DN & DN. IS MEA	: INCHES Y14.5M. ASURED SURFACE	5 MAXIN	IUM) B4.		12*	J							
1. DIE 2. DIN 3. N Nd Ne A. DIN BE 5. TH PA 6. EX	THICK IENSION IS THE IS TH IS TH IENSION IENSI	NUMBEI E NUMBE E NUMBE E NUMBE N B APP 0.20 AP #1 IDEN BY USIN	TOLERAI R OF TI ER OF TI ER OF TO MULES TO MU 0.25 TIFIER I MU SIZE	LE IS O. NCES CO ERMINALS FERMINAL FERMINAL FERMINAL FERMINAL FERMINAL OF THIS OF THIS	ONFORM S. IN X- S IN Y- O TERMIN OM TERM EXISTE MARK (MAXIMUI MUST TO DIRECTION DIRECTION INAL TIP	II (.012 ASME ON & ON. IS MEA E TOP	: INCHES Y14.5M. ASURED SURFACE	5 MAXIN	IUM) B4.	<u> </u>	12'								_
1. DIE 2. DIM 3. N Nd No A. DIM BE 6. EX. 7. ALI	THICK IENSION IS THE IS THE IS THE IS THE IS THE IENSION IENSI	NUMBEI E NUMBE E NUMBE E NUMBE N b APP 0.20 AP 0.20 AP #1 IDEN #1 IDEN BY USIN	TOLERAI R OF TI ER OF T ER OF T LIES TO NO 0.25 TIFIER I IG INDE D SIZE ARE IN	LE IS O. NCES CO TRIMINALS TERMINAL TERMINAL TERMINAL OPLATEI THE	ONFORM 3. S IN X- S IN Y- D TERMINOM TERM EXISTE MARK (FEATUR TERS.	MAXIMUI MUST TO DIRECTIC DIRECTIC IAL AND INAL TIP O ON TH OR INK/L	II (.012 ASME ON & ON. IS MEA E TOP	: INCHES Y14.5M. ASURED SURFACE	5 MAXIN	IUM) B4.	<u> </u>	12'			VI		13	<u> </u>		
1. DIE 2. DIM 3. N Nd Ne DIM 6. EX 7. ALI 8. PA	THICK IENSION IS THE IS TH IS TH IENSION IENSI	NING & NUMBEI E NUMBE E NUMBE E NUMBE O 0.20 AP O 1.20 AP I IDEN BY USIN IAPE ANI NSIONS WARPAG FOR EXP	TOLERAI R OF THE R OF	LE IS O. NCES CO ERMINALS FERMINAI FERMINAI FOR THE MUST BE NTATION OF THIS MILLIME O.O5mm	ONFORM LS IN X- LS IN Y- D TERMIN TERMIN EXISTE MARK (FEATUR TERS. TERMIN TERMIN TERMIN	MAXIMUI MUST TO DIRECTIC DIRECTIC IAL AND INAL TIP O ON TH OR INK/L E IS OP	ASME ON & ON & ON & ON A ON TOP ASER I	! INCHES Y14.5M. ASURED SURFACE MARKED.	5 MAXIN	IUM) B4.		12'			MAY DEGRA		1>	(1		

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.