DISCRETE SEMICONDUCTORS

BF908WR N-channel dual-gate MOS-FET

Preliminary specification
File under Discrete Semiconductors, SC07

1995 Apr 25

Philips Semiconductors

PHILIPS

BF908WR

FEATURES

- High forward transfer admittance
- Short channel transistor with high forward transfer admittance to input capacitance ratio
- Low noise gain controlled amplifier up to 1 GHz.

APPLICATIONS

• VHF and UHF applications with 12 V supply voltage, such as television tuners and professional communications equipment.

DESCRIPTION

Depletion type field effect transistor in a plastic microminiature SOT343R package. The transistor is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

CAUTION

The device is supplied in an antistatic package. The gate-source input must be protected against static discharge during transport or handling.

PINNING

PIN	SYMBOL	DESCRIPTION
1	s, b	source
2	d	drain
3	92	gate 2
4	9 1	gate 1

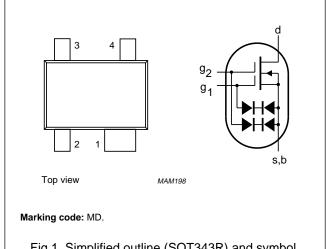


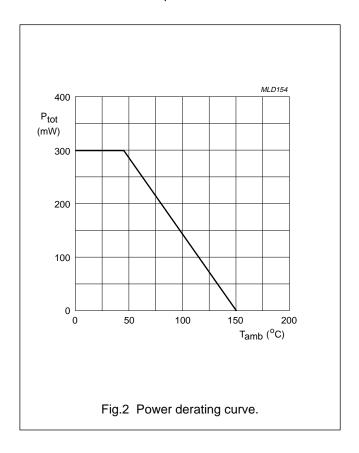
Fig.1 Simplified outline (SOT343R) and symbol.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DS}	drain-source voltage		_	_	12	V
I _D	drain current		_	_	40	mA
P _{tot}	total power dissipation		_	_	300	mW
Tj	operating junction temperature		_	_	150	°C
y _{fs}	forward transfer admittance		36	43	50	mS
C _{ig1-s}	input capacitance at gate 1		2.4	3.1	4	pF
C _{rs}	reverse transfer capacitance	f = 1 MHz	20	30	45	fF
F	noise figure	f = 800 MHz	_	1.5	2.5	dB

1995 Apr 25 2

BF908WR


LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DS}	drain-source voltage		_	12	V
I _D	drain current		_	40	mA
I _{G1}	gate 1 current		_	±10	mA
I _{G2}	gate 2 current		_	±10	mA
P _{tot}	total power dissipation	up to T _{amb} = 45 °C; see Fig.2; note 1	_	300	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	operating junction temperature		_	+150	°C

Note

1. Device mounted on a printed-circuit board.

Philips Semiconductors Preliminary specification

N-channel dual-gate MOS-FET

BF908WR

THERMAL CHARACTERISTICS

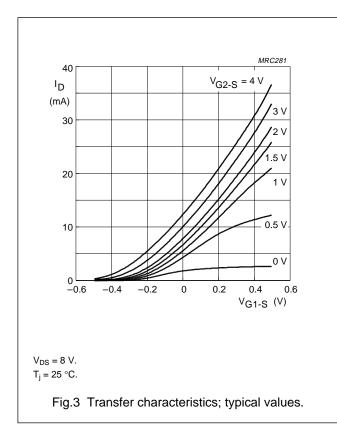
SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	note 1	350	K/W
R _{th j-s}	thermal resistance from junction to soldering point	T _s = 87 °C; note 2	210	K/W

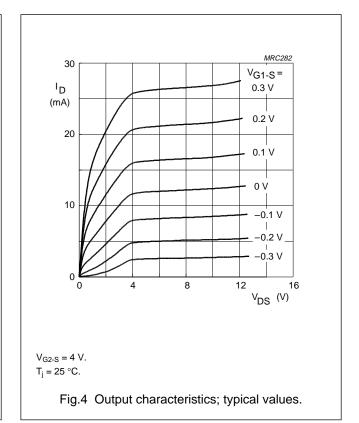
Notes

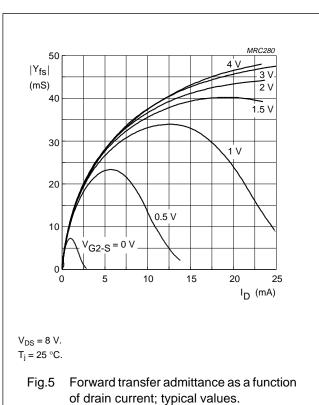
- 1. Device mounted on a printed-circuit board.
- 2. T_s is the temperature at the soldering point of the source lead.

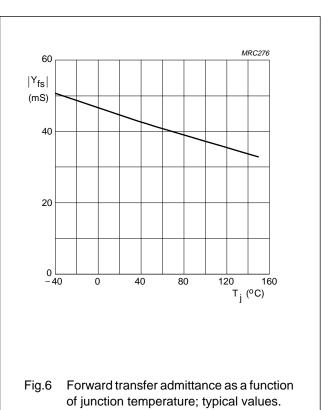
STATIC CHARACTERISTICS

 T_j = 25 °C; unless otherwise specified.

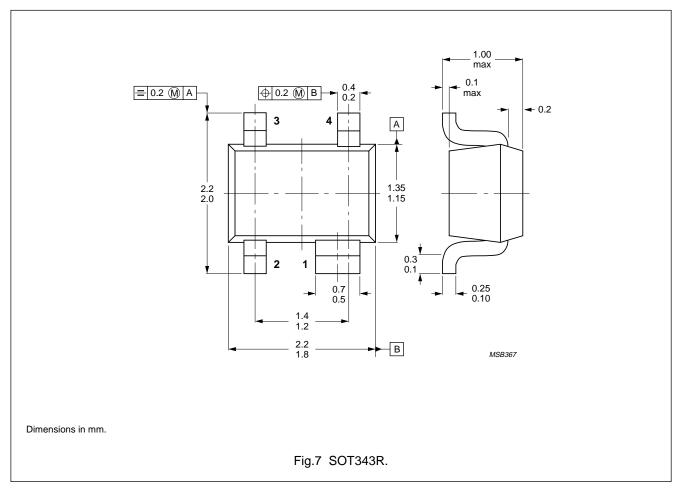

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{(BR)G1-SS}	gate 1-source breakdown voltage	$V_{G2-S} = V_{DS} = 0$; $I_{G1-S} = 10 \text{ mA}$	8	_	20	V
V _{(BR)G2-SS}	gate 2-source breakdown voltage	$V_{G1-S} = V_{DS} = 0$; $I_{G2-S} = 10 \text{ mA}$	8	_	20	V
V _{(P)G1-S}	gate 1-source cut-off voltage	$V_{G2-S} = 4 \text{ V}; V_{DS} = 8 \text{ V}; I_D = 20 \mu\text{A}$	_	_	-2	V
V _{(P)G2-S}	gate 2-source cut-off voltage	$V_{G1-S} = 4 \text{ V}; V_{DS} = 8 \text{ V}; I_D = 20 \mu\text{A}$	_	_	-1.5	V
I _{DSS}	drain-source current	$V_{G2-S} = 4 \text{ V}; V_{DS} = 8 \text{ V}; V_{G1-S} = 0$	3	15	27	mA
I _{G1-SS}	gate 1 cut-off current	$V_{G2-S} = V_{DS} = 0; V_{G1-S} = 5 V$	_	_	50	nA
I _{G2-SS}	gate 2 cut-off current	$V_{G1-S} = V_{DS} = 0; V_{G2-S} = 5 \text{ V}$	_	_	50	nA


DYNAMIC CHARACTERISTICS


Common source; T_{amb} = 25 °C; V_{DS} = 8 V; V_{G2-S} = 4 V; I_{D} = 15 mA; unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
y _{fs}	forward transfer admittance	pulsed; T _j = 25 °C	36	43	50	mS
C _{ig1-s}	input capacitance at gate 1	f = 1 MHz	2.4	3.1	4	pF
C _{ig2-s}	input capacitance at gate 2	f = 1 MHz	1.2	1.8	2.5	pF
Cos	drain-source capacitance	f = 1 MHz	1.2	1.7	2.2	pF
C _{rs}	reverse transfer capacitance	f = 1 MHz	20	30	45	fF
F	noise figure	$f = 200 \text{ MHz}; G_S = 2 \text{ mS}; B_S = B_{Sopt}$	_	0.6	1.2	dB
		$f = 800 \text{ MHz}; G_S = G_{Sopt}; B_S = B_{Sopt}$	_	1.5	2.5	dB

BF908WR



BF908WR

PACKAGE OUTLINE

BF908WR

DEFINITIONS

Data Sheet Status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application information				
Where application information	Where application information is given, it is advisory and does not form part of the specification.			

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.