SIEMENS

Silicon N Channel MOSFET Tetrode

－For input stages in UHF TV tuners
－High transconductance
－Low noise figure

Type	Marking	Ordering Code				Pin Configuration				Package ${ }^{\text {1 }}$
		（tape and reel）	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$				
BF 996 S	MH	Q62702－F1021	S	D	G_{2}	G_{1}	SOT－143			

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain－source voltage	V_{Ds}	20	V
Drain current	ID	30	mA
Gate 1／gate 2 peak source current	$\pm I_{\mathrm{G} 1 / 2 \mathrm{SM}}$	10	
Total power dissipation，$T_{\mathrm{A}}<76^{\circ} \mathrm{C}$	$P_{\text {tot }}$	200	mW
Storage temperature range	T_{stg}	$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
Channel temperature	T_{ch}	150	

Thermal Resistance

Junction－soldering point	$R_{\text {th Js }}$	<370	K／W

[^0]
Electrical Characteristics

at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

DC Characteristics

Drain-source breakdown voltage $I \mathrm{D}=10 \mu \mathrm{~A},-V_{\mathrm{G} 1 \mathrm{~S}}=-V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$	$V_{\text {(BR) }}$ DS	20	-	-	V
Gate 1 source breakdown voltage $\pm I_{\mathrm{G} 1 \mathrm{~s}}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~s}}=V_{\mathrm{DS}}=0$	$\pm V_{\text {(BR) Giss }}$	8.5	-	14	
Gate 2 source breakdown voltage $\pm I \mathrm{G} 2 \mathrm{~s}=10 \mathrm{~mA}, V_{\mathrm{G} 1 \mathrm{~s}}=V_{\mathrm{Ds}}=0$	$\pm V_{\text {(BR) G2SS }}$	8.5	-	14	
Gate 1 source leakage current $\pm V_{\mathrm{G} 1 \mathrm{~S}}=5 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=V_{\mathrm{DS}}=0$	$\pm I \mathrm{G} 1 \mathrm{ss}$	-	-	50	nA
Gate 2 source leakage current $\pm V_{\mathrm{G} 2 \mathrm{~S}}=5 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=V_{\mathrm{DS}}=0$	\pm IG2ss	-	-	50	
Drain current $V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$	Idss	2	-	20	mA
Gate 1 source pinch-off voltage $V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}, I \mathrm{D}=20 \mu \mathrm{~A}$	- VG1s (p)	-	-	2.5	V
Gate 2 source pinch-off voltage $V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, I \mathrm{D}=20 \mu \mathrm{~A}$	- VG2S (p)	-	-	2.0	

Electrical Characteristics

at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

AC Characteristics

Forward transconductance $V \mathrm{DS}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V \mathrm{G} 2 \mathrm{~S}=4 \mathrm{~V}, f=1 \mathrm{kHz}$	$g_{\text {fs }}$	15	18	-	mS
Gate 1 input capacitance $V_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{91 \text { ss }}$	-	2.3	-	pF
Gate 2 input capacitance $V_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {g2ss }}$	-	1.1	-	
Feedback capacitance $V_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {dg1 }}$	-	25	-	fF
Output capacitance $V_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {dss }}$	-	0.8	-	pF
Power gain $\begin{aligned} & V \mathrm{DS}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA} \\ & f=200 \mathrm{MHz}, G \mathrm{G}=2 \mathrm{mS}, G \mathrm{~L}=0.5 \mathrm{mS} \\ & \text { (test circuit } 1 \text {) } \end{aligned}$	$G_{\text {ps }}$	-	25	-	dB
Power gain $\begin{aligned} & V \mathrm{DS}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA} \\ & f=800 \mathrm{MHz}, G \mathrm{G}=2.5 \mathrm{mS}, G\llcorner=0.8 \mathrm{mS} \\ & \text { (test circuit } 2 \text {) } \end{aligned}$	$G_{\text {ps }}$	-	18	-	
Noise figure $\begin{aligned} & V \mathrm{DS}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA} \\ & f=200 \mathrm{MHz}, G \mathrm{G}=2 \mathrm{mS}, G \mathrm{~L}=0.5 \mathrm{mS} \\ & \text { (test circuit } 1 \text {) } \end{aligned}$	F	-	1	-	
Noise figure $\begin{aligned} & V \mathrm{DS}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA} \\ & f=800 \mathrm{MHz}, G \mathrm{G}=2.5 \mathrm{mS}, G\llcorner=0.8 \mathrm{mS} \\ & \text { (test circuit 2) } \end{aligned}$	F	-	1.8	-	
Gain control range $V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \ldots-2 \mathrm{~V}, f=800 \mathrm{MHz}$ (test circuit 2)	$\Delta G_{\text {ps }}$	40	-	-	

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{A}}\right)$

Gate 1 forward transconductance
$g_{\text {fs } 1}=f\left(V_{\mathrm{G} 1 \mathrm{~s}}\right)$
$V_{\mathrm{Ds}}=15 \mathrm{~V}, I \mathrm{dss}=10 \mathrm{~mA}, f=1 \mathrm{kHz}$

Output characteristics $I_{\mathrm{D}}=f\left(V_{\mathrm{DS}}\right)$ $V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$

Gate 1 forward transconductance $g_{\text {ts } 1}=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$
$V_{\mathrm{DS}}=15 \mathrm{~V}$, IDss $=10 \mathrm{~mA}, f=1 \mathrm{kHz}$

Drain current $I \mathrm{D}=f(\mathrm{VG1s})$
$V_{\mathrm{DS}}=15 \mathrm{~V}$

Gate 2 input capacitance $C_{\text {gess }}=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$
$V_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}, V_{\mathrm{DS}}=15 \mathrm{~V}$
IDss $=10 \mathrm{~mA}, f=1 \mathrm{MHz}$

Gate 1 input capacitance $C_{\mathrm{g} 1 \mathrm{ss}}=f\left(V_{\mathrm{G} 1 \mathrm{~s}}\right)$
$V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}, V_{\mathrm{Ds}}=15 \mathrm{~V}$
$I \mathrm{oss}=10 \mathrm{~mA}, f=1 \mathrm{MHz}$

Output capacitance $C_{\text {dss }}=f\left(V_{\mathrm{Ds}}\right)$
$V_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$
IDss $=10 \mathrm{~mA}, f=1 \mathrm{MHz}$

Power gain $G_{\mathrm{ps}}=f(V \mathrm{G} 2 \mathrm{~s})$
$V_{\mathrm{Ds}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}, I \mathrm{Dss}=10 \mathrm{~mA}$ $f=200 \mathrm{MHz}$ (see test circuit 1)

Power gain $G_{\mathrm{ps}}=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$

$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}$, IDss $=10 \mathrm{~mA}$ $f=800 \mathrm{MHz}$ (see test circuit 2)

Noise figure $F=f\left(V_{\text {g2s }}\right)$
$V_{\mathrm{Ds}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~s}}=0 \mathrm{~V}$, $I \mathrm{dss}=10 \mathrm{~mA}$ $f=200 \mathrm{MHz}$ (see test circuit 1)

Noise figure $F=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$
$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}, I_{\mathrm{DSS}}=10 \mathrm{~mA}$ $f=800 \mathrm{MHz}$ (see test circuit 2)

Gate 1 input admittance $y_{11 s}$
$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$
(common source)

Gate 1 forward transfer admittance $\boldsymbol{y}_{21 \mathrm{~s}}$
$V \mathrm{Ds}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$
(common source)

Output admittance $\boldsymbol{y}_{22 \mathrm{~s}}$

$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$
(common source)

Test circuit 1 for power gain and noise figure
$f=200 \mathrm{MHz}, G \mathrm{G}=2 \mathrm{mS}, G \mathrm{~L}=0.5 \mathrm{mS}$

Test circuit 2 for power gain, noise figure and cross modulation
$f=800 \mathrm{MHz}, G \mathrm{G}=2.5 \mathrm{mS}, G\llcorner=0.8 \mathrm{mS}$

EHM07020

[^0]: 1）For detailed information see chapter Package Outlines．

