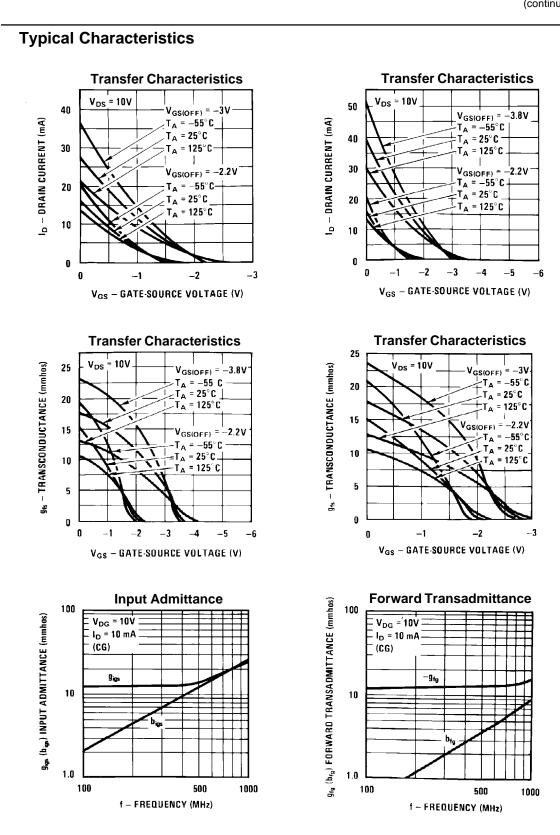
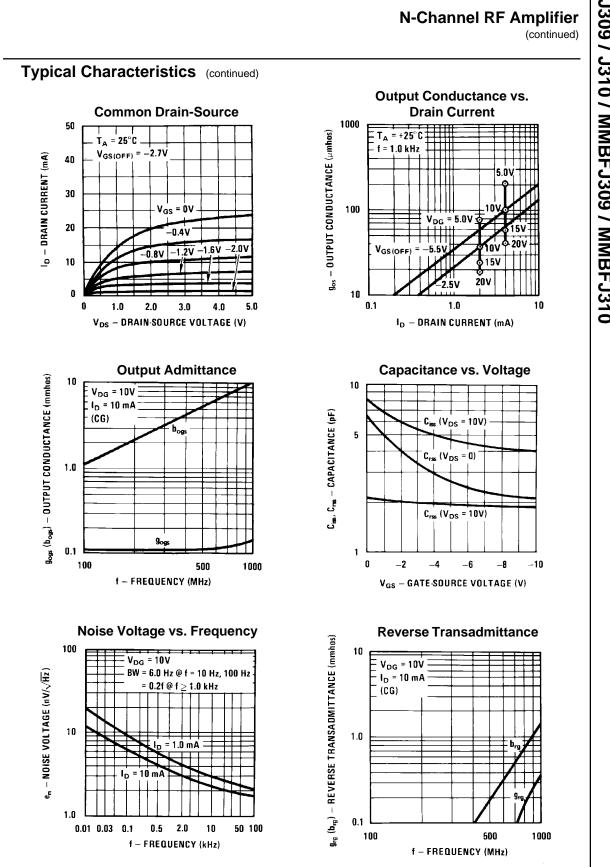


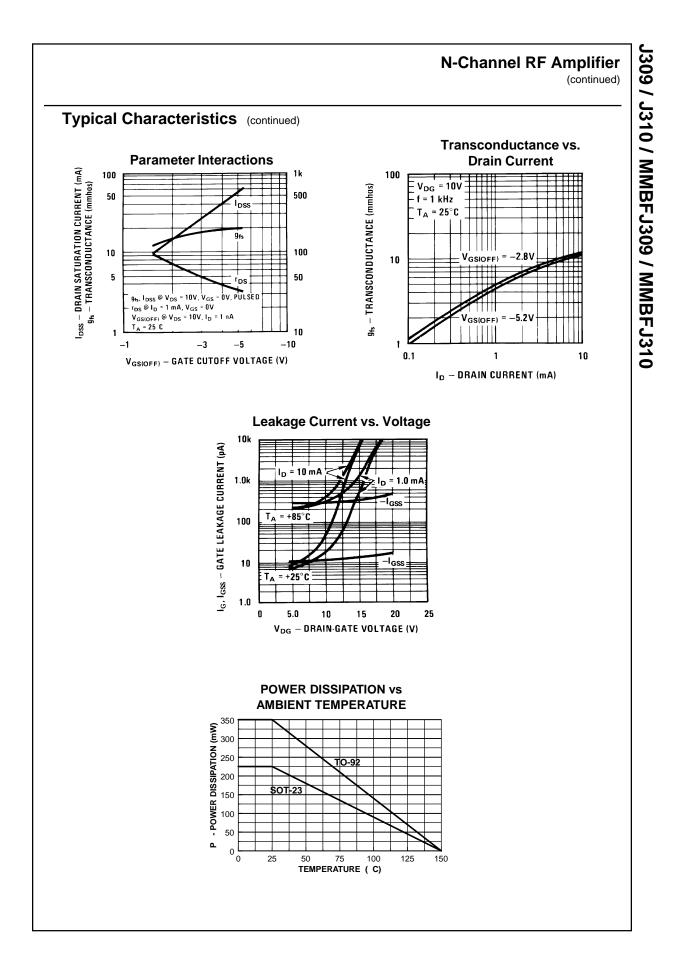
*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

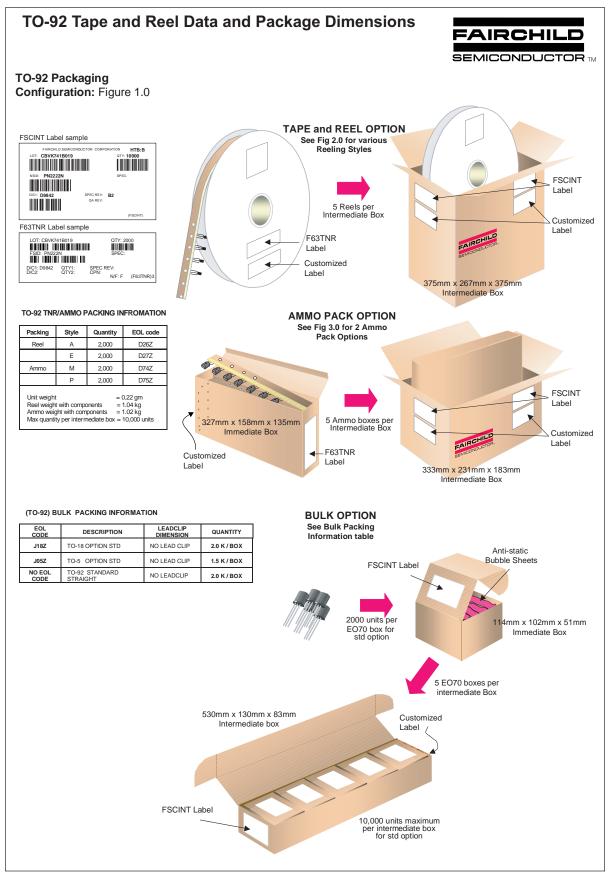

N-Channel RF Amplifie (continue							
Electr Symbol	ical Characteristics T	A = 25°C unless otherwise noted Test Conditions	Min	Тур	Max	Units	
Symbol	i diametei	Test conditions		тур	Wax	Onits	
OFF CHA	RACTERISTICS						
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = -1.0 \ \mu A, \ V_{DS} = 0$	- 25			V	
I _{GSS}	Gate Reverse Current	$V_{GS} = -15 V, V_{DS} = 0$ $V_{GS} = -15 V, V_{DS} = 0, T_A = 125^{\circ}C$			- 1.0 - 1.0	nA μA	
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1.0 \text{ nA}$ J309 J310	- 1.0 - 2.0		- 4.0 - 6.5	V V	
I _{DSS} V _{GS(f)}	Zero-Gate Voltage Drain Current* Gate-Source Forward Voltage	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \qquad \qquad \textbf{J309} \\ \textbf{J310} \\ V_{DS} = 0, \textbf{I}_{G} = 1.0 \text{ mA} \\ \end{cases}$	12 24		30 60 1.0	mA mA V	
SMALL S Re _(Yis)	IGNAL CHARACTERISTICS	V _{DS} = 10, I _D = 10 mA, f = 100 MHz	1				
	·			0.7		mmho	
		J309		0.7 0.5			
Re _(yos)	Common-Source Output Conductance			0.7 0.5 0.25		mmho	
(- <i>)</i>		J309 J310		0.5		mmho	
G _{pg}	Conductance	J309 J310 V _{DS} = 10, I _D = 10 mA, f = 100 MHz		0.5 0.25		mmho mmho dB	
Re _(Yos) 3 _{pg} Re _(Yfs) Re _(Yig)	Conductance Common-Gate Power Gain Common-Source Forward	$\label{eq:VDS} \begin{array}{c} J309\\ J310\\ \end{array}$ $V_{DS} = 10, I_{D} = 10 \text{mA}, f = 100 \text{MHz} \\ \end{array}$ $V_{DS} = 10, I_{D} = 10 \text{mA}, f = 100 \text{MHz} \\ \end{array}$		0.5 0.25 16		mmho mmho dB mmho	
G _{pg} Re ₍ y _{fs)} Re ₍ y _{ig)}	Conductance Common-Gate Power Gain Common-Source Forward Transconductance	$\label{eq:VDS} \begin{array}{c} J309\\ J310 \end{array}$ $V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz$ $V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz$ $V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz$ $V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz$ $V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ MHz$ $J309$	10,000	0.5 0.25 16 12	20,000	mmho mmho dB mmho mmho	
G _{pg} Re(Vfs) Re(Vig) Ifs	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward	$\label{eq:VDS} \begin{array}{c} J309\\ J310 \end{array}$ $V_{DS} = 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz}$ $V_{DS} = 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz}$ $V_{DS} = 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz}$ $V_{DS} = 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz}$ $V_{DS} = 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz}$ $V_{DS} = 10, \ I_D = 10 \ \text{mA}, \ f = 100 \ \text{MHz}$	10,000	0.5 0.25 16 12	20,000 18,000 150	mmho mmho dB mmho mmho µmho µmho	
G _{pg} Re ₍ y _{fs)}	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output	$\label{eq:VDS} \begin{array}{c} J309\\ J310\\ \end{array}$ $V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ \text{kHz}\\ \hline J309\\ J310 \end{array}$,	0.5 0.25 16 12	18,000	mmho mmho dB mmho mmho µmho µmho	
Gpg Re(Vfs) Re(Vig) Ifs Idos	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance	$\label{eq:J309} \begin{array}{c} J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ \hline J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ \hline J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ \hline J309\\ J310\\ \hline J309\\ \hline J309\\ J309\\ \hline J309\\ J309\\ \hline J309\\ J309\\ \hline J309\\$,	0.5 0.25 16 12 12 13,000	18,000	mmho mmho μmhos μmhos μmhos μmhos	
Spg Re(Vfs) Re(Vjg) Ifs Ios Ifg	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Source Output Conductance Common-Gate Forward Conductance	$\label{eq:J309} \begin{array}{c} J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ \hline J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ \hline J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline J310\\ \hline$,	0.5 0.25 16 12 12 13,000 12,000 100	18,000	mmho mmho dB mmho μmho μmho μmho μmho μmho	
Bpg Re(Vfs) Re(Vfg) Ifs Ios Ifg Iog	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Source Output Conductance Common-Gate Forward Conductance Common-Gate Output Conductance	$\label{eq:J309} \begin{array}{c} J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ MHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ \hline J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ kHz\\ J309\\ J310\\ \hline J31$,	0.5 0.25 16 12 12 13,000 12,000 100 150	18,000	mmho mmho dB mmho μmho μmho μmho μmho μmho μmho	
G _{pg} Re(Yfs) Re(Yig) Dfs Jos	Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Source Output Conductance Common-Gate Forward Conductance Common-Gate Forward Conductance Drain-Gate Capacitance	$\label{eq:spectral_states} \begin{array}{c} J309\\ J310\\ \hline \\ J310\\ \hline \\ V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline \\ V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline \\ V_{DS} = 10, \ I_D = 10 \ mA, \ f = 100 \ MHz\\ \hline \\ V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ MHz\\ \hline \\ V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ KHz\\ \hline \\ J309\\ J310\\ \hline \\ V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ KHz\\ \hline \\ J309\\ J310\\ \hline \\ V_{DS} = 10, \ I_D = 10 \ mA, \ f = 1.0 \ KHz\\ \hline \\ J309\\ J310\\ \hline \\ V_{DS} = 0, \ I_D = 10 \ mA, \ f = 1.0 \ KHz\\ \hline \\ J309\\ J310\\ \hline \\ \end{array}$,	0.5 0.25 16 12 12 13,000 12,000 100 150 2.0	18,000 150 2.5	mmho mmho dB mmho mmho µmho µmho µmho µmho pF	

*Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%

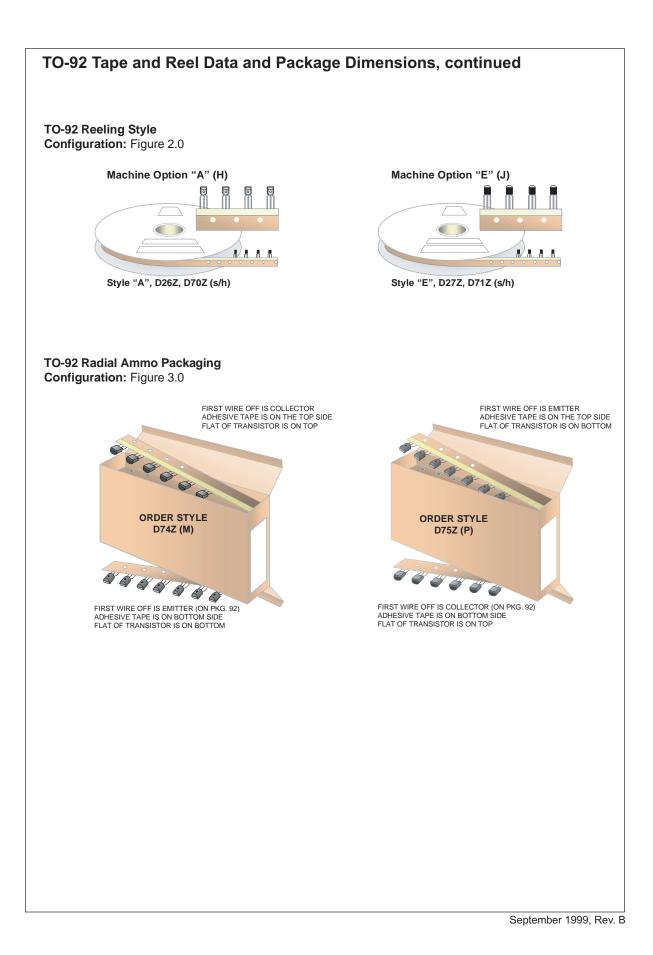

J309 / J310 / MMBFJ309 / MMBFJ310

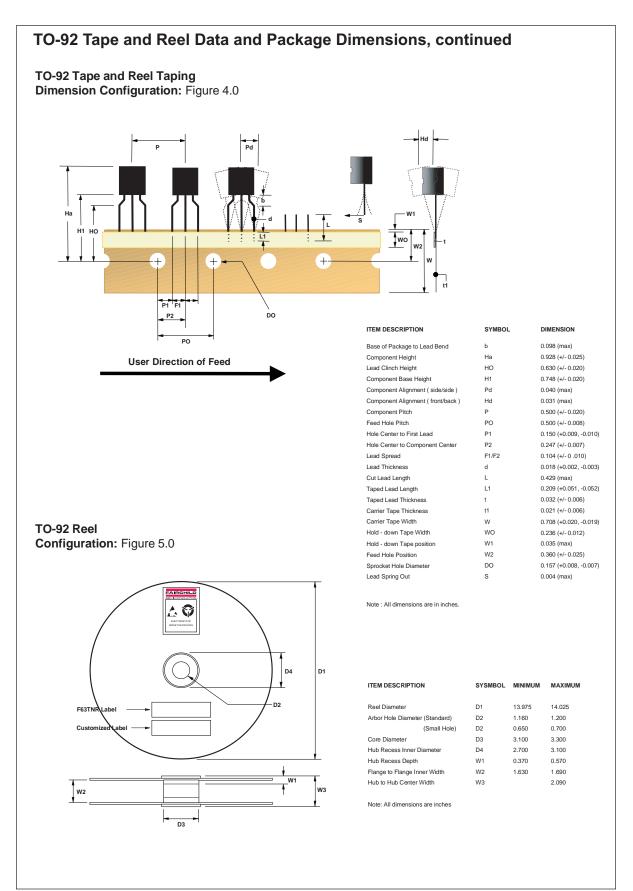
N-Channel RF Amplifier

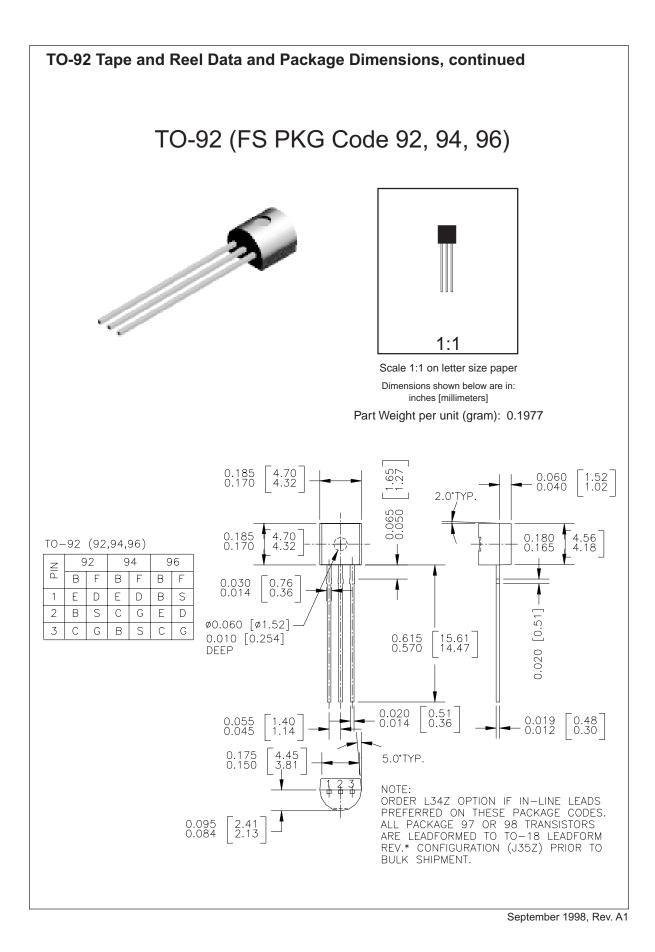

(continued)

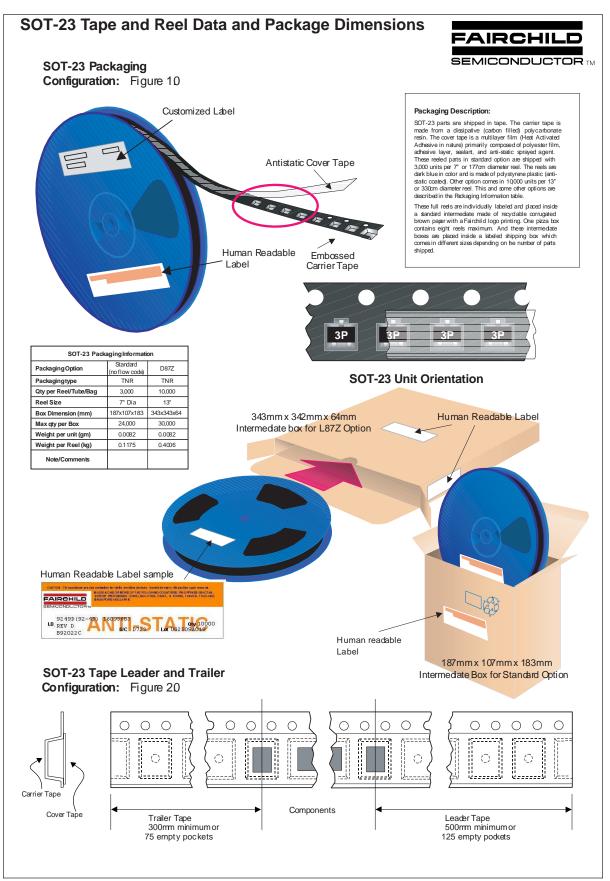


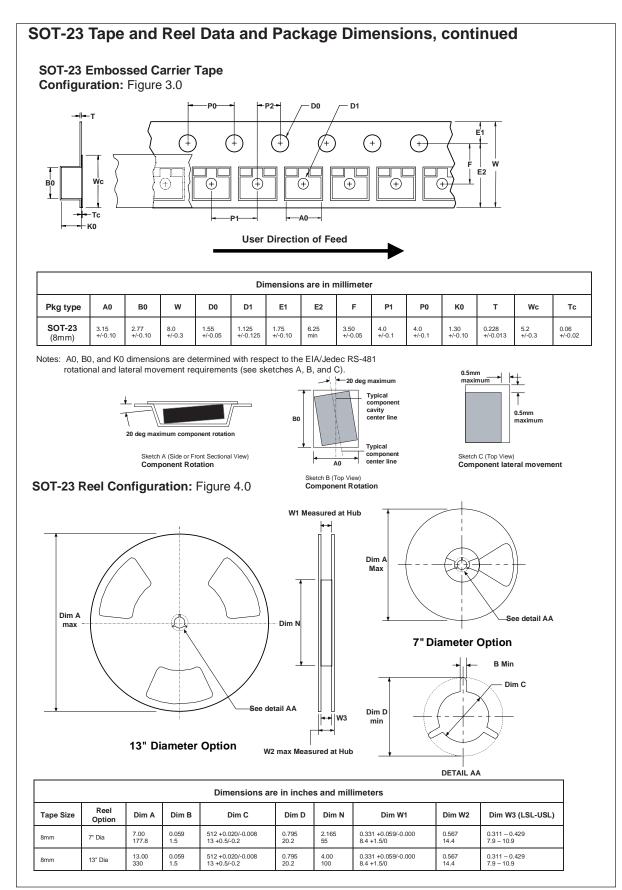
J309 / J310 / MMBFJ309 / MMBFJ310

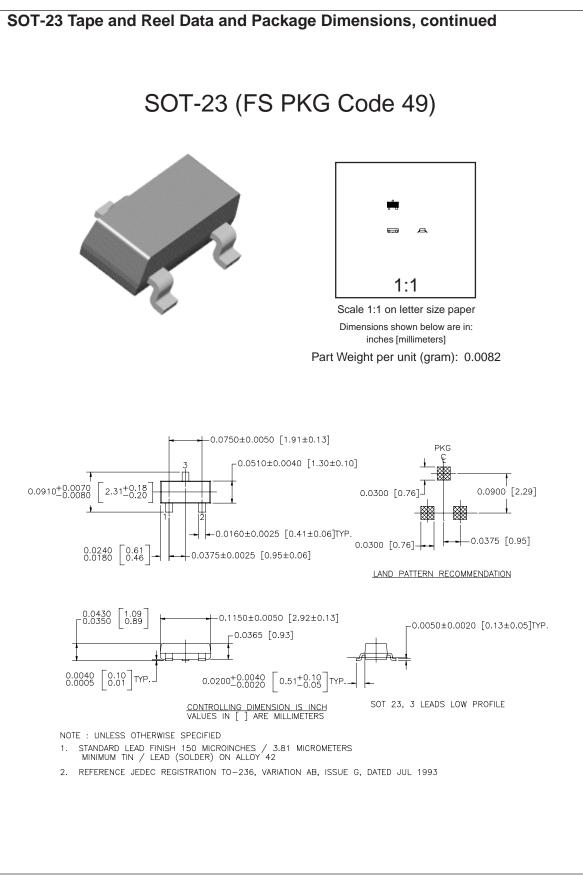



J309 / J310 / MMBFJ309 / MMBFJ310






September 1999, Rev. B



September 1998, Rev. A1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.