
查询BFP405F供应商

SIEGET®25 BFP405F

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking	C.COM	Pin Con	figuratior	ı	Package
BFP405F	ALs	1=B	2=E	3=C	4=E	TSFP-4

direction of unreeling

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	4.5	V
Collector-base voltage	V _{CBO}	15	
Emitter-base voltage	V _{EBO}	1.5	
Collector current	I _C	12	mA
Base current	/ _B	1	
Total power dissipation	P _{tot}	55	mW
$T_{\rm S} \le 122^{\rm o}{\rm C}^{-1}$			CON
Junction temperature	Tj	150	°C
Ambient temperature	T _A	-65 150	
Storage temperature	7 _{stg}	-65 150	

Thermal Resistance

f.dzsc.com

Junction - soldering point ²⁾	R _{thJS}	≤ 500	K/W
--	-------------------	-------	-----

 $^{1}T_{S}$ is measured on the emitter lead at the soldering point to the pcb

²For calculation of *R*thJA please refer to Application Note Thermal Resistance

SIEGET®25 BFP405F

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC characteristics	• • •		•	•	•
Collector-emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V
$l_{\rm C} = 1 {\rm mA}, l_{\rm B} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	150	nA
$V_{\rm CB} = 5 \rm V, \ I_{\rm E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	15	μA
$V_{\rm EB} = 1.5 \text{ V}, I_{\rm C} = 0$					
DC current gain	h _{FE}	50	90	150	-
$I_{\rm C} = 5 \text{ mA}, V_{\rm CE} = 4 \text{ V}$					
AC characteristics (verified by random samplin	g)				
Transition frequency	fT	18	25	-	GHz
$I_{\rm C} = 10 \text{ mA}, V_{\rm CE} = 3 \text{ V}, f = 2 \text{ GHz}$					
Collector-base capacitance	C _{cb}	-	0.05	0.1	pF
$V_{\text{CB}} = 2 \text{ V}, f = 1 \text{ MHz}$					
Collector-emitter capacitance	C _{ce}	-	0.2	-	1
$V_{CE} = 2 V, f = 1 MHz$					
Emitter-base capacitance	C _{eb}	-	0.25	-	1
$V_{\rm EB} = 0.5 \text{ V}, f = 1 \text{ MHz}$					
Noise figure	F	-	1.25	-	dB
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
<i>f</i> = 1.8 GHz					
Power gain, maximum stable ¹⁾	G _{ms}	-	23	-	
$I_{\rm C} = 5 \text{ mA}, V_{\rm CE} = 2 \text{ V}, Z_{\rm S} = Z_{\rm Sopt}, Z_{\rm L} = Z_{\rm Lopt}$,					
<i>f</i> = 1.8 GHz					
Insertion power gain	S ₂₁ ²	-	18	-	
<i>I</i> _C = 5 mA, <i>V</i> _{CE} = 2 V, <i>f</i> = 1.8 GHz,					
$Z_{\rm S} = Z_{\rm L} = 50\Omega$					
Third order intercept point at output ²⁾	IP ₃	-	14	-	dBm
$I_{\rm C} = 5 \text{ mA}, V_{\rm CE} = 2 \text{ V}, Z_{\rm S} = Z_{\rm L} = 50 \Omega,$					
<i>f</i> = 1.8 GHz					
1dB Compression point at output ³⁾	P _{-1dB}	-	0	-	
$I_{\rm C} = 5 \text{ mA}, V_{\rm CE} = 2 \text{ V}, f = 1.8 \text{ GHz},$					
$Z_{\rm S} = Z_{\rm L} = 50\Omega$					

Electrical Characteristics at $T_A = 25^{\circ}$ C, unless otherwise specified.

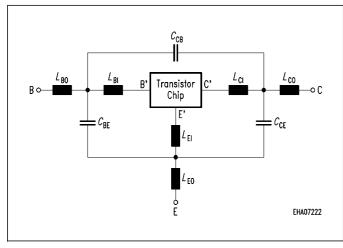
 $^{1}G_{\rm ms} = |S_{21} / S_{12}|$

 2 IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1MHz to 6GHz.

³DC current no input power

SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :

Transistor Chip Data


			10					
IS =	0.21024	fA	BF =	83.23	-	NF =	1.0405	-
VAF =	39.251	V	IKF =	0.16493	А	ISE =	15.761	fA
NE =	1.7763	-	BR =	10.526	-	NR =	0.96647	-
VAR =	34.368	V	IKR =	0.25052	А	ISC =	0.037223	fA
NC =	1.3152	-	RB =	15	Ω	IRB =	0.21215	A
RBM =	1.3491	Ω	RE =	1.9289		RC =	0.12691	Ω
CJE =	3.7265	fF	VJE =	0.70367	V	MJE =	0.37747	-
TF =	4.5899	ps	XTF =	0.3641	-	VTF =	0.19762	V
ITF =	1.3364	mA	PTF =	0	deg	CJC =	96.941	fF
VJC =	0.99532	V	MJC =	0.48652	-	XCJC =	0.08161	-
TR =	1.4935	ns	CJS =	0	fF	VJS =	0.75	V
MJS =	0	-	XTB =	0	-	EG =	1.11	eV
XTI =	3	-	FC =	0.99469	-	TNOM	300	K

C'-E'-Diode Data (Berkley-SPICE 2G.6 Syntax) :

	IS =	2	fA	N =	1.02	-	RS =	20	Ω
--	------	---	----	-----	------	---	------	----	---

All parameters are ready to use, no scaling is necessary

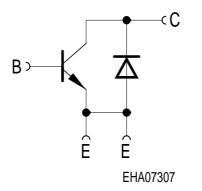
Package Equivalent Circuit:

$L_{\rm BO} =$	0.22	nH	$L_{BI} =$	0.42	nH
$L_{\rm EO} =$	0.28	nH	$R_{\text{LBI}} =$	0.15	Ω
$L_{\rm CO} =$	0.22	nH	$L_{EI} =$	0.26	nH
Кво-ео =	0.10	-	$R_{\text{LEI}} =$	0.11	Ω
Кво-со =	0.01	-	L _{CI} =	0.35	nH
KEO-CO =	0.11	-	R _{LCI} =	0.13	Ω
$C_{BE} =$	34	fF	KCI-EI =	-0.05	-
$C_{\rm BC} =$	2	fF	Кві-сі =	-0.08	-
$C_{CE} =$	33	fF	Кві-еі =	0.20	-
Valid up t	o 6GHz				

The TSFP-4 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection.

 R_{LXI} are series resistors for the inductances L_{XI} and K_{XA-YD} are the coupling coefficients between the inductances L_{XA} and L_{YD} . The referencepins for the coupled ports are B, E, C, B`, E`, C`.

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes



For non-linear simulation:

- Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
- If you need simulation of the reverse characteristics, add the diode with the C'-E'- diode data between collector and emitter.
- Simulation of package is not necessary for frequencies < 100MHz.
 For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model.

Note:

• This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation.

Transistor Schematic Diagram

The common emitter configuration shows the following advantages:

- Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe.

Please note, that the broadest lead is the emitter lead.