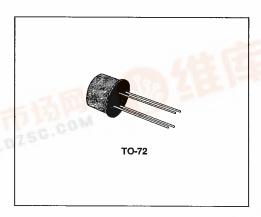
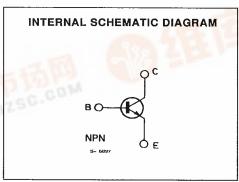


7. 24小时加急出货 BFX89 BFY90


S G S-THOMSON

WIDE BAND VHF/UHF AMPLIFIER

- SILICON PLANAR EPITAXIAL TRANSISTORS
- TO-72 METAL CASE
- VERY LOW NOISE


APPLICATIONS:

- TELECOMMUNICATIONS
- WIDE BAND UHF AMPLIFIER
- RADIO COMMUNICATIONS

DESCRIPTION

The BFX89 and BFY90 are silicon planar epitaxial NPN transistors produced using interdigitated base emitter geometry. They are particulary designed for use in wide band common-emitter linear amplifiers up to 1 GHz. They feature very high fr, low reverse capacitance, excellent cross modulation properties and very low noise performance. The BFY90 is complementary to the BFR99A. Typical applications include telecommunication and radio communication equipment.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit V	
V _{CBO}	Collector-base Voltage (I _E = 0)	30		
V _{CER}	Collector-emitter Voltage (R _{BE} ≤ 50 Ω)	30	V	
V_{CEO}	Collector-emitter Voltage (I _B = 0)	15	V	
V _{EBO}	Emitter-base Voltage (I _C = 0)	2.5	V	
lc	Collector Current	25	mA	
IcM	Collector Peak Current (f ≥ 1 MHz)	50	mA	
P _{tot}	Total Power Dissipation at T _{amb} ≤ 25 °C	200	mW	
T _{stg} , T _j	Storage and Junction Temperature	- 65 to 200	°C	

November 1988

1/4

BFX89-BFY90

S G S-THOMSON

T-31-15

7929237 0030996 1 30E D

THERMAL DATA

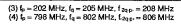
R _{th i-case}	Thermal Resistance Junction-case	Max	580	i °C/W ∣
□th j-case	Thomas Hodistando Canolich Case			
Russaus	Thermal Resistance Junction-ambient	Max	880	°C/W
Hth j-amb	Thermal Resistance denotion-ambient	IVICA	550	-/11

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ }^{\circ}\text{C}$ unless otherwise specified)

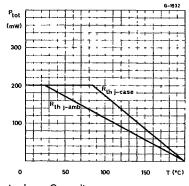
Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Ісво	Collector Cutoff Current (I _E = 0)	V _{CB} = 15 V				10	nA
V _{CEK} *	Collector-emitter Knee Voltage	I _C = 20 mA				0.75	>
h _{FE}	DC Current Gain	$I_C = 2 \text{ mA}$ $I_C = 25 \text{ mA}$	V _{CE} = 1 V for BFX89 for BFY90 V _{CE} = 1 V	20 25 20		150 150 125	
f⊤	Transition Frequency	V _{CE} = 5 V I _C = 2 mA	f = 500 MHz for BFX89 for BFY90	1	1 1.1		GHz GHz
		I _C = 25 mA	for BFX89 for BFY90	1.3	1.2 1.4		GHz GHz
C _{CBO} ⁽¹⁾	Collector-base Capacitance	I _E = 0 f = 1 MHz	V _{CB} = 10 V for BFX89 for BFY90			1.7 1.5	pF pF
C _{re} ⁽²⁾	Reverse Capacitance	l _C = 2 mA f = 1 MHz	V _{CE} = 5 V for BFX89 for BFY90		0.6 0.6	0.8	pF pF
NF ⁽²⁾	Noise Figure	I _C = 2 mA R _g = Optimized	for BFY90 Only f = 200 MHz			4	dB
		$R_g = Optimized$ $R_a = 50 \Omega$	for BFX89 for BFY90 f = 500 MHz for BFX89		3.3 2.5	4 3.5	dB dB
		$R_a = Optimized$	for BFY90 f = 800 MHz			6.5 5	dB dB
		11g = 0pum250	for BFY90		7 5.5		dB dB
G _{pe} ⁽²⁾	Power Gain (not neutralized)	for BFX89 I _C = 8 mA for BFY90	V _{CE} = 10 V f = 200 MHz f = 800 MHz	19	22 7		dB dB
	or which $l_0 = 22$ mA at $V_{CE} = 1$ V	I _C = 14 mA	$V_{CE} = 10 \text{ V}$ f = 200 MHz f = 800 MHz	21	23 8		dB dB

I_B = value for which I_C = 22 mA at V_{CE} = 1 V
 (1) Shield lead not grounded
 (2) Shield lead grounded

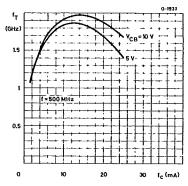
(3) $f_p = 202$ MHz, $f_q = 205$ MHz, $f_{(2q p)} = 208$ MHz (4) $f_p = 798$ MHz, $f_q = 802$ MHz, $f_{(2q p)} = 806$ MHz

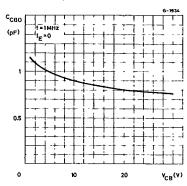

S G S-THOMSON

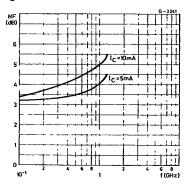
ELECTRICAL CHARACTERISTICS (continued)


T-31-15

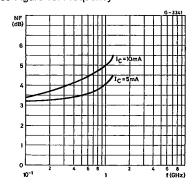
Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
P _o	Output Power	for BFX89 $I_{C} = 8$ mA $V_{CE} = 10$ $d_{im} = -30$ dB $^{(3)}$ Channel 9 $^{(4)}$ Channel 62 for BFY90 $I_{C} = 14$ mA $V_{CE} = 10$		6 6		mW mW
		d _m = - 30 dB (3) Channel 9 (4) Channel 62	10	12 12		mW mW

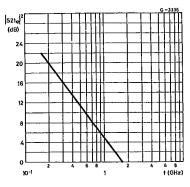

- le = value for witch lc = 22 mA at V_{CE} = 1 V
 (1) Shield lead not grounded
 (2) Shield lead grounded


Power Rating Chart.


Transition Frequency.

Collector-base Capacitance.


Noise Figure vs. Collector Current.


SGS-THOMSON MICROPLECTROPICS

Noise Figure vs. Frequency.

Forward Transmission Gain vs. Frequency.

