

MOS INTEGRATED CIRCUIT μ PD43256B-X

256K-BIT CMOS STATIC RAM 32K-WORD BY 8-BIT EXTENDED TEMPERATURE OPERATION

Description

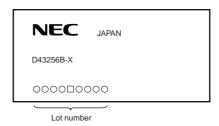
The μ PD43256B-X is a high speed, low power, and 262,144 bits (32,768 words by 8 bits) CMOS static RAM. The μ PD43256B-X is an extended-operating-temperature version of the μ PD43256B (X version : T_A = -25 to +85

°C). And A and B versions are low voltage operations. Battery backup is available.

The μ PD43256B-X is packed in 28-pin plastic TSOP (I) (8 x 13.4 mm).

Features

- 32,768 words by 8 bits organization
- Fast access time: 70, 85, 100, 120, 150 ns (MAX.)
- Operating ambient temperature: T_A = −25 to +85 °C
- Low voltage operation (A version: Vcc = 3.0 to 5.5 V, B version: Vcc = 2.7 to 5.5 V)
- Low Vcc data retention: 2.0 V (MIN.)
- /OE input for easy application


Part number	Access time	Operating supply	Operating ambient		Supply current		
	ns (MAX.)	voltage V	temperature °C	At operating mA (MAX.)	At standby μ A (MAX.)	At data retention μ A (MAX.) Note1	
μPD43256B-xxX	70, 85	4.5 to 5.5	-25 to +85	45	50	2	
μPD43256B-AxxX	85 Note2, 100, 120 Note2	3.0 to 5.5					
μPD43256B-BxxX Note2	100, 120 Note2, 150 Note2	2.7 to 5.5		40			

Notes 1. Ta \leq 40 °C, Vcc = 3.0 V

2. 100 s (MAX.) (Vcc = 4.5 to 5.5 V)

Version X

This Data sheet can be applied to the version X. Each version is identified with its lot number. Letter X in the fifth character position in a lot number signifies version X.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

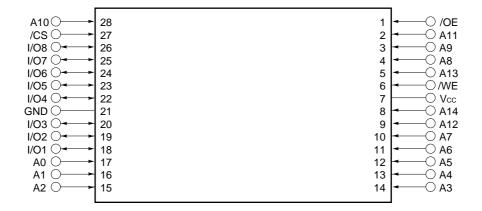
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

Document No. M11012EJ4V0DSJ1 (4th edition) Date Published December 2000 NS CP (K) Printed in Japan The mark ★ shows major revised points.

★ Ordering Information

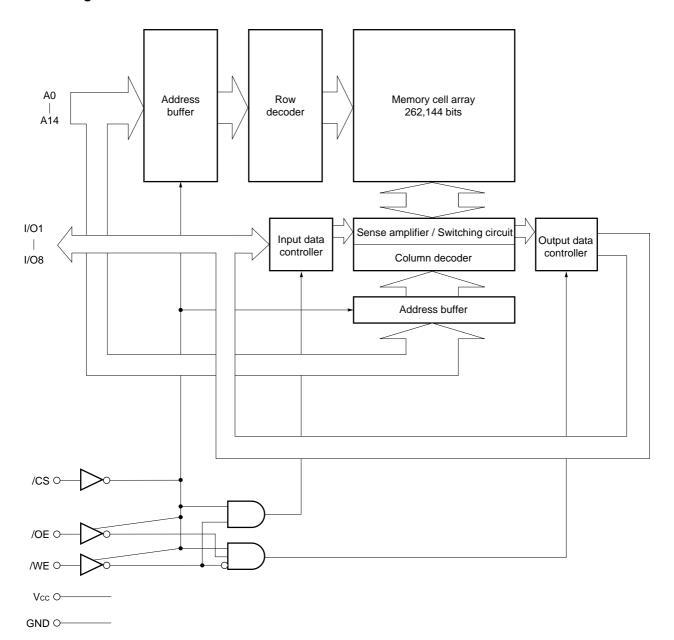
Part number	Package	Access time	Operating supply	Operating ambient	Remark
		ns (MAX.)	voltage V	temperature °C	
DD 400000 014 004 0 11					
μPD43256BGW-70X-9JL	28-PIN PLASTIC TSOP(I)	70	4.5 to 5.5	–25 to +85	
μPD43256BGW-85X-9JL	(8x13.4) (Normal bent)	85			
μPD43256BGW-A85X-9JL		85	3.0 to 5.5		A version
μPD43256BGW-A10X-9JL		100			
μPD43256BGW-A12X-9JL		120			
μPD43256BGW-B10X-9JL		100	2.7 to 5.5		B version
μPD43256BGW-B12X-9JL		120			
μPD43256BGW-B15X-9JL		150			
μPD43256BGW-70X-9KL	28-PIN PLASTIC TSOP(I)	70	4.5 to 5.5		
μPD43256BGW-85X-9KL	(8x13.4) (Reverse bent)	85			
μPD43256BGW-A85X-9KL		85	3.0 to 5.5		A version
μPD43256BGW-A10X-9KL		100			
μPD43256BGW-A12X-9KL		120			
μPD43256BGW-B10X-9KL		100	2.7 to 5.5		B version
μPD43256BGW-B12X-9KL		120			
μPD43256BGW-B15X-9KL		150			


2


★ Pin Configurations (Marking Side)

/xxx indicates active low signal.

28-PIN PLASTIC TSOP(I) (8x13.4) (Normal bent) $[\mu PD43256BGW-xxX-9JL] \\ [\mu PD43256BGW-AxxX-9JL] \\ [\mu PD43256BGW-BxxX-9JL]$



A0 - A14 : Address inputs
I/O1 - I/O8 : Data inputs / outputs

/CS : Chip Select
/WE : Write Enable
/OE : Output Enable
Vcc : Power supply
GND : Ground

Remark Refer to **Package Drawings** for the 1-pin index mark.

Block Diagram

Truth Table

/CS	/OE	/WE	Mode	I/O	Supply current
Н	×	×	Not selected	High impedance	lsв
L	Н	Н	Output disable		ICCA
L	×	L	Write	Din	
L	L	Н	Read	D оит	

Remark \times : VIH or VIL

4

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	Vcc		-0.5 Note to +7.0	V
Input / Output voltage	VT		-0.5 Note to Vcc + 0.5	V
Operating ambient temperature	TA		-25 to +85	°C
Storage temperature	T _{stg}		-55 to +125	°C

Note -3.0 V (MIN.) (Pulse width: 50 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	μPD432	56B-xxX	μPD43256B-AxxX		μPD43256B-BxxX		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Supply voltage	Vcc		4.5	5.5	3.0	5.5	2.7	5.5	V
High level input voltage	VIH		2.4	Vcc+0.5	2.4	Vcc+0.5	2.4	Vcc+0.5	V
Low level input voltage	VIL		-0.3 Note	+0.6	-0.3 Note	+0.4	-0.3 Note	+0.4	V
Operating ambient temperature	TA		-25	+85	-25	+85	-25	+85	°C

Note -3.0 V (MIN.) (Pulse width: 50 ns)

Capacitance (T_A = 25 °C, f = 1 MHz)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	Vin = 0 V			5	pF
Input / Output capacitance	Cı/o	V _{1/0} = 0 V			8	pF

Remarks 1. VIN: Input voltage

Vi/o: Input / Output voltage

2. These parameters are periodically sampled and not 100% tested.

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (1/2)

Parameter	Symbol	Test condition	μPD43256B-xxX			
			MIN.	TYP.	MAX.	
Input leakage current	lu	V _{IN} = 0 V to Vcc	-1.0		+1.0	μΑ
I/O leakage current	ILO	Vivo = 0 V to Vcc, /OE = ViH or	-1.0		+1.0	μΑ
		/CS = VIH or /WE = VIL				
Operating supply current	ICCA1	/CS = V _{IL} , Minimum cycle time, I _{I/O} = 0 mA			45	mA
	Icca2	/CS = V _{IL} , I _{VO} = 0 mA			15	
	Іссаз	/CS ≤ 0.2 V, Cycle = 1 MHz,			15	
		$I_{VO} = 0$ mA, $V_{IL} \le 0.2$ V, $V_{IH} \ge V_{CC} - 0.2$ V				
Standby supply current	Isa	/CS = V _{IH}			3	mA
	I _{SB1}	/CS ≥ Vcc - 0.2 V		1.0	50	μΑ
High level output voltage	Vон1	Iон = −1.0 mA	2.4			V
	V _{OH2}	Іон = -0.1 mA	Vcc-0.5			
Low level output voltage	Vol	IoL = 2.1 mA			0.4	V

Remarks 1. VIN: Input voltage

Vi/o : Input / Output voltage

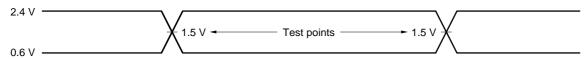
2. These DC characteristics are in common regardless of package types.

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (2/2)

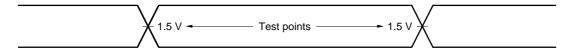
Parameter	Symbol	Test condition				43256B-	AxxX	μPD4	13256B-	BxxX	Unit
						TYP.	MAX.	MIN.	TYP.	MAX.	
Input leakage current	lu	VIN = 0 V to Vcc	-1.0		+1.0	-1.0		+1.0	μΑ		
I/O leakage current	ILO	$V_{I/O} = 0 V \text{ to Vcc, /OE}$	= VIH or		-1.0		+1.0	-1.0		+1.0	μΑ
		/CS = VIH or /WE = VI	L								
Operating supply current	ICCA1	/CS = VIL,	μPD43	256B-A85X			45			-	mA
		Minimum cycle time,	μPD43	256B-A10X			40			_	
		I ₁ /O = 0 mA	μPD43	256B-A12X			40			_	
			μPD43	256B-B10X			_			40	
			μPD43	256B-B12X			_			40	
			μPD43	256B-B15X			-			40	
							-			25	
	ICCA2	/CS = VIL, II/O = 0 mA					15			15	
				Vcc ≤ 3.3 V			_			10	
	Іссаз	/CS ≤ 0.2 V, Cycle =	1 MHz, I	/o = 0 mA,			15			15	
		$V_{\text{IL}} \leq 0.2 \text{ V}, \text{ V}_{\text{IH}} \geq V_{\text{CC}}$	– 0.2 V	Vcc ≤ 3.3 V			_			10	
Standby supply current	IsB	/CS = VIH					3			3	mA
				Vcc ≤ 3.3 V			_			2	
	I _{SB1}	/CS ≥ Vcc - 0.2 V				1.0	50		1.0	50	μΑ
				Vcc ≤ 3.3 V			_			25	
High level output voltage	V _{OH1}	Iон = −1.0 mA, Vcc ≥	4.5 V		2.4			2.4			V
		lон = −0.5 mA, Vcc < -	loн = -0.5 mA, Vcc < 4.5 V					2.4			
	V _{OH2}	он = -0.02 mA		Vcc-			Vcc-				
					0.1			0.1			
Low level output voltage	Vol	$lol = 2.1 \text{ mA}, Vcc \ge 4.$	5 V				0.4			0.4	V
		IoL = 1.0 mA, Vcc < 4.	5 V				0.4			0.4	
	V _{OL1}	loL = 0.02 mA					0.1			0.1	

Remarks 1. VIN: Input voltage

Vi/o: Input / Output voltage

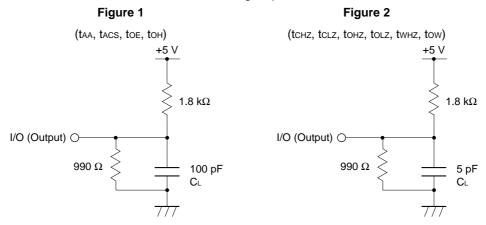

2. These DC characteristics are in common regardless of package types.

AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

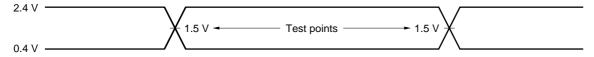

AC Test Conditions

$[\mu PD43256B-70X, \mu PD43256B-85X]$

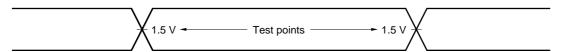
Input Waveform (Rise and Fall Time ≤ 5 ns)



Output Waveform


Output Load

AC characteristics should be measured with the following output load conditions.



Remark CL includes capacitance of the probe and jig, and stray capacitance.

[μPD43256B-A85X, μPD43256B-A10X, μPD43256B-A12X, μPD43256B-B10X, μPD43256B-B12X, μPD43256B-B15X] Input Waveform (Rise and Fall Time \leq 5 ns)

Output Waveform

★ Output Load

AC characteristics should be measured with the following output load conditions.

taa, tacs, toe, toh	tchz, tclz, tohz, tolz, twhz, tow
1TTL + 50 pF	1TTL + 5 pF

Read Cycle (1/2)

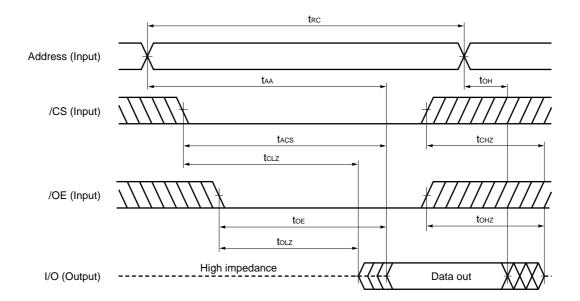
Parameter	Symbol			Vcc	≥ 4.5 V			Unit	Con-
		μPD432	56B-70X	μPD432	56B-85X	μPD4325	6B-AxxX		dition
						μPD4325	6B-BxxX		
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	t RC	70		85		100		ns	
Address access time	t AA		70		85		100	ns	Note
/CS access time	tacs		70		85		100	ns	
/OE access time	t oe		35		40		50	ns	
Output hold from address change	tон	10		10		10		ns	
/CS to output in low impedance	tclz	10		10		10		ns	
/OE to output in low impedance	tolz	5		5		5		ns	
/CS to output in high impedance	t cHZ		30		30		35	ns	
/OE to output in high impedance	tонz		30		30		35	ns	

Note See the output load.

Remark These AC characteristics are in common regardless of package types and L, LL versions.

Read Cycle (2/2)

Parameter	Symbol		$Vcc \ge 3.0 \ V$				Vcc ≥ 2.7 V							Unit	Con-
		l '	μPD43256B- A85X			μPD43256B- A12X		3256B- 0X	<i>'</i>	3256B- 2X	'	3256B- 5X		dition	
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	85		100		120		100		120		150		ns	
Address access time	taa		85		100		120		100		120		150	ns	Note
/CS access time	tacs		85		100		120		100		120		150	ns	
/OE access time	toe		50		60		60		60		60		70	ns	
Output hold from address change	tон	10		10		10		10		10		10		ns	
/CS to output in low impedance	tcLZ	10		10		10		10		10		10		ns	
/OE to output in low impedance	toLz	5		5		5		5		5		5		ns	
/CS to output in high impedance	tснz		35		35		40		35		40		50	ns	
/OE to output in high impedance	tонz		35		35		40		35		40		50	ns	


Note See the output load.

Remark These AC characteristics are in common regardless of package types.

Data Sheet M11012EJ4V0DS

9

Read Cycle Timing Chart

Remark In read cycle, /WE should be fixed to high level.

11

Write Cycle (1/2)

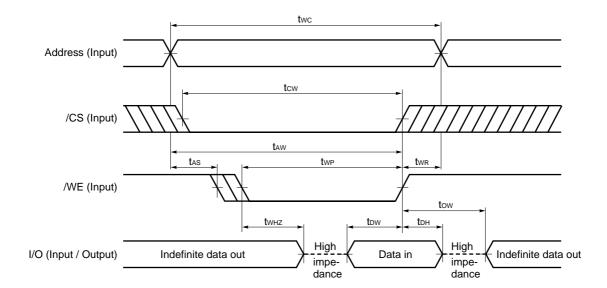
Parameter	Symbol		Vcc ≥ 4.5 V						
		μPD432	56B-70X	μPD432	56B-85X		66B-AxxX 66B-BxxX		dition
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	70		85		100		ns	
/CS to end of write	tcw	60		70		80		ns	
Address valid to end of write	taw	60		70		80		ns	
Write pulse width	twp	55		60		70		ns	
Data valid to end of write	tow	30		35		40		ns	
Data hold time	tон	5		5		5		ns	
Address setup time	t as	0		0		0		ns	
Write recovery time	twr	0		0		0		ns	
/WE to output in high impedance	twnz		30		30		35	ns	Note
Output active from end of write	tow	5		5		5		ns	

Note See the output load.

Remark These AC characteristics are in common regardless of package types and L, LL versions.

Write Cycle (2/2)

Parameter	Symbol	Vcc ≥ 3.0 V					Vcc ≥ 2.7 V					Unit	Con-		
		μPD43256B- A85X		μPD43256B- A10X		μPD43256B- A12X		μPD43256B- B10X		μPD43256B- B12X		μPD43256B- B15X			dition
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	85		100		120		100		120		150		ns	
/CS to end of write	tcw	70		70		90		70		90		100		ns	
Address valid to end of write	taw	70		70		90		70		90		100		ns	
Write pulse width	twp	60		60		80		60		80		90		ns	
Data valid to end of write	tow	60		60		70		60		70		80		ns	
Data hold time	tон	5		5		5		5		5		5		ns	
Address setup time	t as	0		0		0		0		0		0		ns	
Write recovery time	twr	0		0		0		0		0		0		ns	
/WE to output in high impedance	t wHz		35		35		40		35		40		40	ns	Note
Output active from end of write	tow	5		5		5		5		5		5		ns	

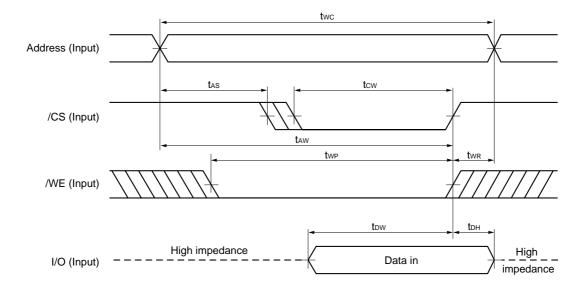

Data Sheet M11012EJ4V0DS

Note See the output load.

Remark These AC characteristics are in common regardless of package types.

μ. υ 101000 μ.

Write Cycle Timing Chart 1 (/WE Controlled)


Cautions 1. /CS or /WE should be fixed to high level during address transition.

2. When I/O pins are in the output state, do not apply to the I/O pins signals that are opposite in phase with output signals.

Remarks 1. Write operation is done during the overlap time of a low level /CS and a low level /WE.

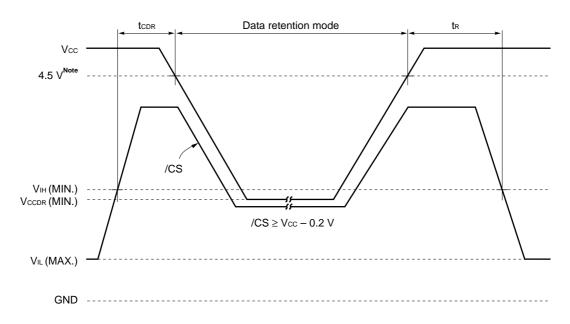
- 2. When /WE is at low level, the I/O pins are always high impedance. When /WE is at high level, read operation is executed. Therefore /OE should be at high level to make the I/O pins high impedance.
- 3. If /CS changes to low level at the same time or after the change of /WE to low level, the I/O pins will remain high impedance state.

Write Cycle Timing Chart 2 (/CS Controlled)

Cautions 1. /CS or /WE should be fixed to high level during address transition.

2. When I/O pins are in the output state, do not apply to the I/O pins signals that are opposite in phase with output signals.

Remark Write operation is done during the overlap time of a low level /CS and a low level /WE.

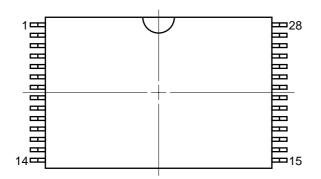


Low Vcc Data Retention Characteristics (TA = -25 to +85 °C)

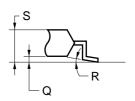
Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vccdr	/CS ≥ Vcc - 0.2 V	2.0		5.5	V
Data retention supply current	Iccdr	Vcc = 3.0 V, /CS ≥ Vcc - 0.2 V		0.5	20 Note	μΑ
Chip deselection to data retention mode	tcdr		0			ns
Operation recovery time	t R		5			ms

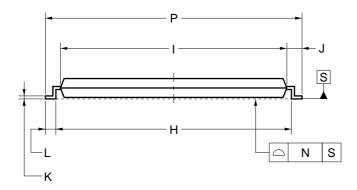
Note 2 μ A (T_A \leq 40 °C), 7 μ A (T_A \leq 70 °C)

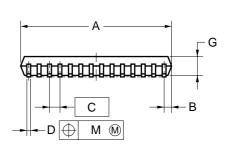
Data Retention Timing Chart


Note A version: 3.0 V, B version: 2.7 V

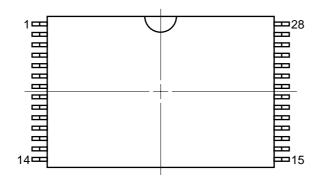
Remark The other pins (Address, /OE, /WE, I/O) can be in high impedance state.



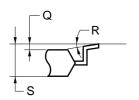

★ Package Drawings

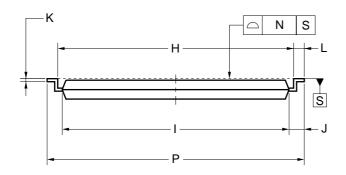

28-PIN PLASTIC TSOP(I) (8x13.4)

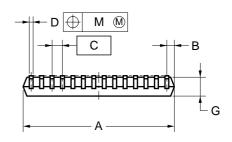
detail of lead end


NOTES

- Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.
- 2. "A" excludes mold flash. (Includes mold flash: 8.4mm MAX.)


ITEM	MILLIMETERS
Α	8.0±0.1
В	0.6 MAX.
С	0.55 (T.P.)
D	$0.22^{+0.08}_{-0.07}$
G	1.0
Н	12.4±0.2
I	11.8±0.1
J	0.8±0.2
К	$0.145^{+0.025}_{-0.015}$
L	0.5±0.1
М	0.08
N	0.10
Р	13.4±0.2
Q	0.1±0.05
R	3°+7° -3°
S	1.2 MAX.
	DOCOM FF O II O


P28GW-55-9JL-2


28-PIN PLASTIC TSOP(I) (8x13.4)

detail of lead end

NOTE

- 1. Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.
- 2. "A" excludes mold flash. (Includes mold flash: 8.4mm MAX.)

ITEM	MILLIMETERS
A	8.0±0.1
В	0.6 MAX.
С	0.55 (T.P.)
D	$0.22^{+0.08}_{-0.07}$
G	1.0
Н	12.4±0.2
ı	11.8±0.1
J	0.8±0.2
K	$0.145^{+0.025}_{-0.015}$
L	0.5±0.1
М	0.08
N	0.10
Р	13.4±0.2
Q	0.1±0.05
R	3°+7° -3°
S	1.2 MAX.

P28GW-55-9KL-2

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD43256B-X.

Types of Surface Mount Device

 $\mu PD43256BGW-xxX-9JL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Normal bent) \\ \mu PD43256BGW-xxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-AxxX-9JL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Normal bent) \\ \mu PD43256BGW-AxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9JL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Normal bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLASTIC TSOP(I) (8x13.4) (Reverse bent) \\ \mu PD43256BGW-BxxX-9KL: 28-PIN PLA$

[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of December, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4