

BGY787 750 MHz, 21.5 dB gain push-pull Rev. 08 — 1 April 2005

Product data sheet

1. Product profile

1.1 General description

Hybrid amplifier module in a SOT115J package operating with a voltage supply of 24 V (DC).

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features

- Extremely low noise
- Silicon nitride passivation
- Rugged construction
- Gold metallization ensures excellent reliability
- Excellent linearity

1.3 Applications

CATV systems operating in the frequency range of 40 MHz to 750 MHz

1.4 Quick reference data

Table 1:	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Gp	power gain	f = 50 MHz	21	21.5	22	dB
		f = 750 MHz	21.5	22.5	-	dB
I _{tot}	total current consumption (DC)	$V_B = 24 V$	<u>[1]</u> _	220	240	mA

[1] The module normally operates at $V_B = 24$ V, but is able to withstand supply transients up to 30 V.

BGY787

750 MHz, 21.5 dB gain push-pull amplifier

2. Pinning information

Table 2:	Pinning	
Pin	Description	Simplified outline Symbol
1	input	
2	common	
3	common	
5	+V _B	
7	common	
8	common	
9	output	

3. Ordering information

Table 3: Ordering information							
Type number	Package						
	Name	Description	Version				
BGY787	-	rectangular single-ended package; aluminium flange; 2 vertical mounting holes; $2 \times 6-32$ UNC and 2 extra horizontal mounting holes; 7 gold-plated in-line leads	SOT115J				

4. Limiting values

Table 4: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Vi	RF input voltage		-	60	dBmV
T _{stg}	storage temperature		-40	+100	°C
T _{mb}	mounting base temperature		-20	+100	°C

5. Characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
G _p	power gain	f = 50 MHz		21	21.5	22	dB
		f = 750 MHz		21.5	22.5	-	dB
SL	slope cable equivalent	f = 40 MHz to 750 MHz		0	1	1.5	dB
FL	flatness of frequency response	f = 40 MHz to 750 MHz		-	±0.2	±0.5	dB
s ₁₁	input return losses	f = 40 MHz to 80 MHz		20	33	-	dB
		f = 80 MHz to 160 MHz		18.5	30	-	dB
		f = 160 MHz to 320 MHz		17	25	-	dB
		f = 320 MHz to 640 MHz		15.5	22	-	dB
		f = 640 MHz to 750 MHz		14	20.5	-	dB
S ₂₂	output return losses	f = 40 MHz to 80 MHz		20	28.5	-	dB
		f = 80 MHz to 160 MHz		18.5	27.5	-	dB
		f = 160 MHz to 320 MHz		17	25	-	dB
		f = 320 MHz to 640 MHz		15.5	22	-	dB
		f = 640 MHz to 750 MHz		14	20	-	dB
Φ S21	phase response	f = 50 MHz		-45	-	+45	deg
СТВ	composite triple beat	110 channels flat; V _o = 44 dBmV; measured at 745.25 MHz		-	-54.5	-53	dB
X _{mod}	cross modulation	110 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 55.25 MHz		-	-54	-52	dB
CSO	composite second order distortion	110 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 746.5 MHz		-	-57.5	-53	dB
d ₂	second order distortion		<u>[1]</u>	-	-75	-63	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	[2]	61	63	-	dBmV
F	noise figure	f = 50 MHz		-	4	5	dB
		f = 450 MHz		-	-	5.5	dB
		f = 550 MHz		-	-	5.5	dB
		f = 600 MHz		-	-	6	dB
		f = 750 MHz		-	5	6.5	dB
I _{tot}	total current consumption (DC)		[3]	-	220	240	mA

[1] $f_p = 55.25 \text{ MHz}; V_p = 44 \text{ dBmV}; f_q = 691.25 \text{ MHz}; V_q = 44 \text{ dBmV}; \text{ measured at } f_p + f_q = 746.5 \text{ MHz}.$

[2] Measure according to DIN45004B;

 $f_p = 740.25 \text{ MHz}; V_p = V_o; f_q = 747.25 \text{ MHz}; V_q = V_o - 6 \text{ dB}; f_r = 749.25 \text{ MHz}; V_r = V_o - 6 \text{ dB}; \text{ measured at } f_p + f_q - f_r = 738.25 \text{ MHz}.$ [3] The module normally operates at V_B = 24 V, but is able to withstand supply transients up to 30 V.

750 MHz, 21.5 dB gain push-pull amplifier

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
G _p	power gain	f = 50 MHz		21	21.5	22	dB
		f = 770 MHz		21.5	22.5	-	dB
SL	slope cable equivalent	f = 40 MHz to 770 MHz		0	1	1.5	dB
FL	flatness of frequency response	f = 40 MHz to 770 MHz		-	±0.2	±0.5	dB
S ₁₁	input return losses	f = 40 MHz to 80 MHz		20	33	-	dB
		f = 80 MHz to 160 MHz		18.5	30	-	dB
		f = 160 MHz to 320 MHz		17	25	-	dB
		f = 320 MHz to 640 MHz		15.5	22.5	-	dB
		f = 640 MHz to 770 MHz		14	20.5	-	dB
S ₂₂	output return losses	f = 40 MHz to 80 MHz		20	28.5	-	dB
		f = 80 MHz to 160 MHz		18.5	27.5	-	dB
		f = 160 MHz to 320 MHz		17	25	-	dB
		f = 320 MHz to 640 MHz		15.5	22	-	dB
		f = 640 MHz to 770 MHz		14	20	-	dB
Φ S21	phase response	f = 50 MHz		-45	-	+45	deg
СТВ	composite triple beat	110 channels flat; $V_o = 44 \text{ dBmV}$; measured at 745.25 MHz		-	-54.5	-53	dB
X _{mod}	cross modulation	110 channels flat; $V_o = 44 \text{ dBmV}$; measured at 55.25 MHz		-	-54	-52	dB
CSO	composite second order distortion	110 channels flat; $V_o = 44 \text{ dBmV}$; measured at 746.5 MHz		-	-57.5	-53	dB
d ₂	second order distortion		[1]	-	-75	-63	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	[2]	61	63	-	dBm
F	noise figure	f = 50 MHz		-	4	5	dB
		f = 450 MHz		-	-	5.5	dB
		f = 550 MHz		-	-	5.5	dB
		f = 600 MHz		-	-	6	dB
		f = 770 MHz		-	5	6.5	dB
tot	total current consumption (DC)		[3]	-	220	240	mA

Table 6: Characteristics at bandwidth 40 MHz to 770 MHz - 21 V· T 2000.7

 $[1] \quad f_p = 55.25 \text{ MHz}; \text{ } \text{V}_p = 44 \text{ } \text{dBmV}; \text{ } \text{f}_q = 691.25 \text{ } \text{MHz}; \text{ } \text{V}_q = 44 \text{ } \text{dBmV}; \text{ measured at } \text{f}_p + \text{f}_q = 746.5 \text{ } \text{MHz}.$

[2] Measure according to DIN45004B;

 $f_p = 740.25 \text{ MHz}; V_p = V_0; f_q = 747.25 \text{ MHz}; V_q = V_0 - 6 \text{ dB}; f_r = 749.25 \text{ MHz}; V_r = V_0 - 6 \text{ dB};$ measured at $f_p + f_q - f_r = 738.25 \text{ MHz}.$ [3] The module normally operates at $V_B = 24$ V, but is able to withstand supply transients up to 30 V.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
G _p	power gain	f = 50 MHz		21	21.5	22	dB
		f = 600 MHz		21.5	-	-	dB
SL	slope cable equivalent	f = 40 MHz to 600 MHz		0	-	1.5	dB
FL	flatness of frequency response	f = 40 MHz to 600 MHz		-	-	±0.3	dB
s ₁₁	input return losses	f = 40 MHz to 80 MHz		20	33	-	dB
		f = 80 MHz to 160 MHz		18.5	30	-	dB
		f = 160 MHz to 320 MHz		17	25	-	dB
		f = 320 MHz to 600 MHz		16	22.5	-	dB
\$ ₂₂	output return losses	f = 40 MHz to 80 MHz;		20	28.5	-	dB
		f = 80 MHz to 160 MHz		18.5	27.5	-	dB
		f = 160 MHz to 320 MHz		17	25	-	dB
		f = 320 MHz to 600 MHz		16	22	-	dB
Φ S21	phase response	f = 50 MHz		-45	-	+45	deg
СТВ	composite triple beat	85 channels flat; V_o = 44 dBmV; measured at 595.25 MHz		-	-59.5	-58	dB
X _{mod}	cross modulation	85 channels flat; V_o = 44 dBmV; measured at 55.25 MHz		-	-55.5	-53	dB
CSO	composite second order distortion	85 channels flat; V_o = 44 dBmV; measured at 596.5 MHz		-	-64	-56	dB
d ₂	second order distortion		[1]	-	-	-68	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	[2]	62.5	-	-	dBmV
F	noise figure	see Table 5		-	-	-	dB
I _{tot}	total current consumption (DC)		[3]	-	220	240	mA

Table 7: Characteristics at bandwidth 40 MHz to 600 MHz $V_P = 24 V$: $T_{core} = 30 \degree C$: $Z_S = Z_I = 75 \Omega_c$

[1] $f_p = 55.25 \text{ MHz}$; $V_p = 44 \text{ dBmV}$; $f_q = 541.25 \text{ MHz}$; $V_q = 44 \text{ dBmV}$; measured at $f_p + f_q = 596.5 \text{ MHz}$.

[2] Measure according to DIN45004B;

 $f_p = 590.25 \text{ MHz}; V_p = V_o; f_q = 597.25 \text{ MHz}; V_q = V_o - 6 \text{ dB}; f_r = 599.25 \text{ MHz}; V_r = V_o - 6 \text{ dB}; \text{ measured at } f_p + f_q - f_r = 588.25 \text{ MHz}.$

[3] The module normally operates at $V_B = 24$ V, but is able to withstand supply transients up to 30 V.

Symbol	Parameter	Conditions	М	lin [°]	Тур	Max	Unit
Gp	power gain	f = 50 MHz	2′	1 :	21.5	22	dB
		f = 550 MHz	2	1.5	-	-	dB
SL	slope cable equivalent	f = 40 MHz to 550 MHz	0		-	1.5	dB
FL	flatness of frequency response	f = 40 MHz to 550 MHz	-		-	±0.3	dB
S ₁₁	input return losses	f = 40 MHz to 80 MHz	20	0 :	33	-	dB
		f = 80 MHz to 160 MHz	18	8.5	30	-	dB
		f = 160 MHz to 320 MHz	17	7 :	25	-	dB
		f = 320 MHz to 550 MHz	16	6	22.5	-	dB
s ₂₂	output return losses	f = 40 MHz to 80 MHz	20	0	28.5	-	dB
		f = 80 MHz to 160 MHz	18	8.5	27.5	-	dB
		f = 160 MHz to 320 MHz	17	7	25	-	dB
		f = 320 MHz to 550 MHz	16	6	22	-	dB
Φ S21	phase response	f = 50 MHz	-4	45	-	+45	deg
СТВ	composite triple beat	77 channels flat; V_0 = 44 dBmV; measured at 547.25 MHz	-		-61	-60	dB
X _{mod}	cross modulation	77 channels flat; V_0 = 44 dBmV; measured at 55.25 MHz	-		-56.5	-55	dB
CSO	composite second order distortion	77 channels flat; $V_o = 44 \text{ dBmV}$; measured at 548.5 MHz	-		-65.5	-58	dB
d ₂	second order distortion		<u>[1]</u> _		-	-70	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	2 63	3	-	-	dBmV
F	noise figure	see Table 5	-		-	-	dB
I _{tot}	total current consumption (DC)		[3] _	:	220	240	mA

Table 8: Characteristics at bandwidth 40 MHz to 550 MHz $V_{\text{R}} = 24 V$: $T_{\text{core}} = 30 \,^{\circ}\text{C}$: $Z_{\text{S}} = Z_{\text{L}} = 75 \,\Omega_{\text{c}}$

[1] $f_p = 55.25 \text{ MHz}$; $V_p = 44 \text{ dBmV}$; $f_q = 493.25 \text{ MHz}$; $V_q = 44 \text{ dBmV}$; measured at $f_p + f_q = 548.5 \text{ MHz}$.

[2] Measure according to DIN45004B;

 $f_p = 540.25 \text{ MHz}; V_p = V_o; f_q = 547.25 \text{ MHz}; V_q = V_o - 6 \text{ dB}; f_r = 549.25 \text{ MHz}; V_r = V_o - 6 \text{ dB}; \text{ measured at } f_p + f_q - f_r = 538.25 \text{ MHz}.$

[3] The module normally operates at V_B = 24 V, but is able to withstand supply transients up to 30 V.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
G _p	power gain	f = 50 MHz		21	21.5	22	dB
		f = 450 MHz		21.5	-	-	dB
SL	slope cable equivalent	f = 40 MHz to 450 MHz		0	-	1.5	dB
FL	flatness of frequency response	f = 40 MHz to 450 MHz		-	-	±0.3	dB
s ₁₁	input return losses	f = 40 MHz to 80 MHz		20	33	-	dB
		f = 80 MHz to 160 MHz		18.5	30	-	dB
		f = 160 MHz to 320 MHz		17	25	-	dB
		f = 320 MHz to 450 MHz		16	22.5	-	dB
s ₂₂	output return losses	f = 40 MHz to 80 MHz		20	28.5	-	dB
		f = 80 MHz to 160 MHz		18.5	27.5	-	dB
		f = 160 MHz to 320 MHz		17	25	-	dB
		f = 320 MHz to 450 MHz		16	22	-	dB
Φ S21	phase response	f = 50 MHz		-45	-	+45	deg
СТВ	composite triple beat	60 channels flat; $V_{\rm o}$ = 46 dBmV; measured at 445.25 MHz		-	-	-59	dB
X _{mod}	cross modulation	60 channels flat; V_o = 46 dBmV; measured at 55.25 MHz		-	-	-54	dB
CSO	composite second order distortion	60 channels flat; $\rm V_o$ = 46 dBmV; measured at 446.5 MHz		-	-	-60	dB
d ₂	second order distortion		[1]	-	-	-73	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	[2]	64	-	-	dBmV
F	noise figure	see Table 5		-	-	-	dB
I _{tot}	total current consumption (DC)		[3]	-	220	240	mA

Table 9: Characteristics at bandwidth 40 MHz to 450 MHz $V_{P} = 24 V$: $T_{acco} = 30 \,^{\circ}C$: $Z_{S} = Z_{L} = 75 \,\Omega$.

[1] $f_p = 55.25 \text{ MHz}$; $V_p = 46 \text{ dBmV}$; $f_q = 391.25 \text{ MHz}$; $V_q = 46 \text{ dBmV}$; measured at $f_p + f_q = 446.5 \text{ MHz}$.

[2] Measure according to DIN45004B;

 $f_p = 440.25 \text{ MHz}; V_p = V_o; f_q = 447.25 \text{ MHz}; V_q = V_o - 6 \text{ dB}; f_r = 449.25 \text{ MHz}; V_r = V_o - 6 \text{ dB}; \text{ measured at } f_p + f_q - f_r = 438.25 \text{ MHz}.$

[3] The module normally operates at $V_B = 24$ V, but is able to withstand supply transients up to 30 V.

Philips Semiconductors

BGY787

750 MHz, 21.5 dB gain push-pull amplifier

6. Package outline

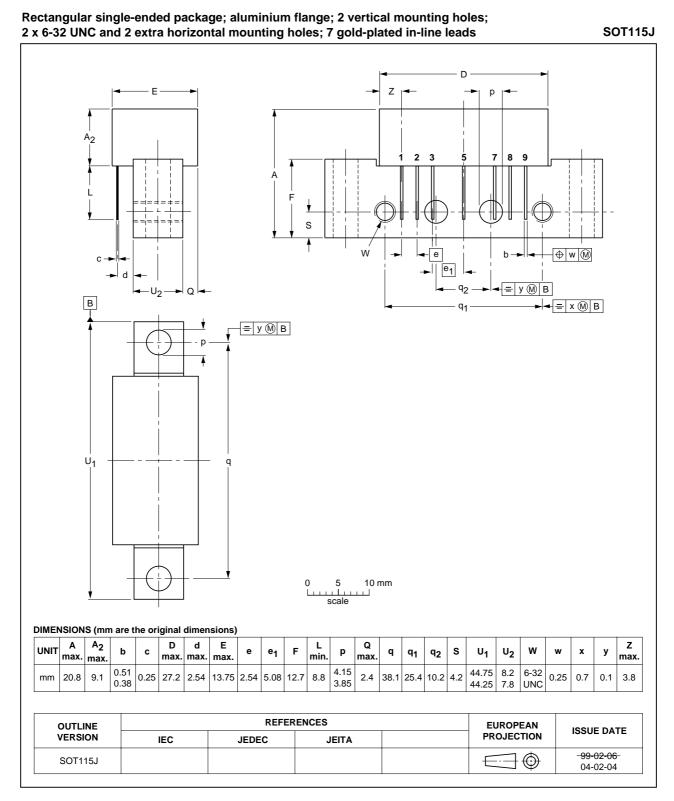


Fig 1. Package outline SOT115J

BGY787

750 MHz, 21.5 dB gain push-pull amplifier

7. Revision history

Table 10): Rev	vision	historv
		131011	motory

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
BGY787_8	20050401	Product data sheet	-	9397 750 14773	BGY787_7
Modifications:		of this data sheet has bee standard of Philips Semic		oly with the new prese	ntation and
BGY787_7	20030516	Product specification	-	9397 750 11198	BGY787_6
BGY787_6	20011031	Product specification	-	9397 750 08811	BGY787_5
BGY787_5	19990330	Product specification	-	9397 750 05455	BGY787_4
BGY787_4	19971124	Product specification	-	9397 750 02951	BGY787_3
BGY787_3	19970414	Product specification	-	9397 750 02155	-

8. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

9. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

10. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

11. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

BGY787

750 MHz, 21.5 dB gain push-pull amplifier

12. Contents

1	Product profile 1
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Characteristics 3
6	Package outline 8
7	Revision history9
8	Data sheet status 10
9	Definitions 10
10	Disclaimers 10
11	Contact information

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Published in The Netherlands

Date of release: 1 April 2005 Document number: 9397 750 14773