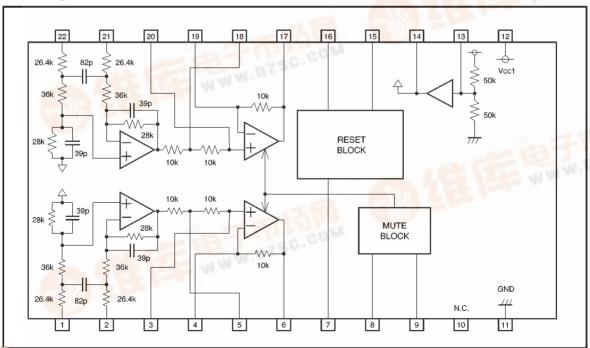
会出货

Post amplifier applicable with 1-bit D / A converter BH3561AF

The BH3561AF is a post amplifier applicable with 1-bit D / A converter for compact disc players.


Applications

CD players, etc.

Features

- 1) 2-channel analog filter IC for 1-bit D / A converters.
- Internal partial CR for two channels (left and right) LPF.
- 3) Operates on a single power supply.

Block diagram

● Absolute maximum ratings (Ta = 25°C)

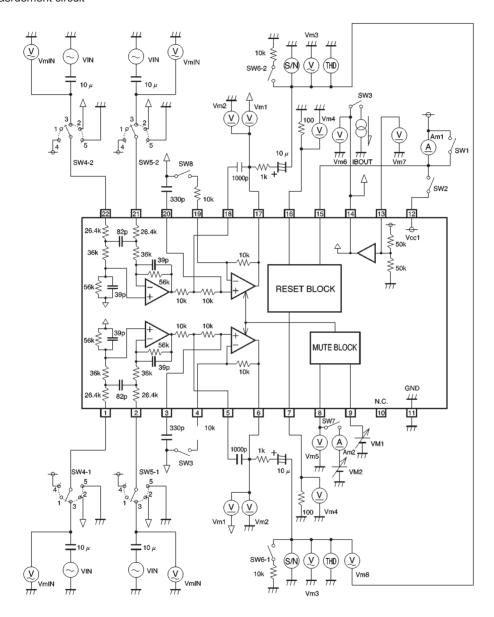
Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	8	V
Power dissipation	Pd	450*	mW
Operating temperature	Topr	−35 ~+85	Ĉ
Storage temperature	Tstg	−55~+150	°C

^{*} Reduced by 4.5 mW for each increase in Ta of 1°C over 25°C.

● Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage 1	Vcc 1	4.5~8.0	V
Power supply voltage 2	Vcc 2	2.0~8.0	٧

Pin descriptions


Pin No.	Pin name	Function		
1	IN1 (+)	Channel 1 positive input		
2	IN1 (—)	Channel 1 negative input		
3	FILTER 1 - 1	Filter setting (1-1)		
4	GAIN 1	Gain adjustment (1)		
5	FILTER 2-1	Filter setting (2-1)		
6	OUT1	Channel 1 output		
7	OUTMUTE 1	Output mute transistor drive (1)		
8	Сτ	Connecting the mute time constant capacitor		
9	MUTE	Mute control		
10	N.C.	_		
11	GND	Ground		
12	Vcc 1	Power supply		
13	BIAS IN	Bias input		
14	BIAS OUT	Bias output		
15	Vcc2	Power supply for reset block idling		
16	OUTMUTE 2	Output mute transistor drive (2)		
17	OUT 2	Channel 2 output		
18	FILTER 2-2	Filter setting (2-2)		
19	GAIN 2	Gain adjustment (2)		
20	FILTER 1-2	Filter setting (1-2)		
21	IN2 (-)	Channel 2 negative input		
22	IN2 (+)	Channel 2 positive input		

•Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc1 = 5V, Vcc2 = 5V, RL= 10kΩ)

- '			,	,		, ,
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current 1	lo ₁	3.5	5	6.5	mA	MUTE OFF, RL = ∞
Quiescent current 2	la ₂	8	12	16	mA	MUTE ON, R∟ = ∞
Standby current 1	ls ₁	_	0	1	μΑ	MUTE OFF, RL = ∞, Vcc1 OFF
Standby current 2	ls ₂	_	0	1	μΑ	MUTE ON, RL = ∞, Vcc1 OFF
Offset voltage 1	V _{off2}	-15	0	15	mV	MUTE OFF,reference BIAS OUTPUT
Offset voltage 2	V _{off2}	-1 5	0	15	mV	MUTE ON,reference BIAS OUTPUT
Bias voltage	VBO	2.3	2.5	2.7	٧	
Bias voltage load regulation 1	ΔVBO1	_	_	50	mV	I _B = +5mA (source)
Bias voltage load regulation 2	ΔV _{BO2}	_	_	50	mV	$l_B = -5mA \text{ (sink)}$
C τ source current	lMin.	13	17	21	μΑ	C τ = 1.4 V, MUTE OFF
C τ sink current	Mout	13	17	21	μΑ	C τ = 1.4 V, MUTE ON
C τ sink/source current ratio	OUT / IN	0.8	1	1.2	_	
MUTE ON voltage	V _{thON1}	1.6	_	_	٧	Verifies : output voltage is at BIAS level.
MUTE OFF voltage	V _{thOFF1}	_	_	1.2	٧	Verifies : output voltage is at HIGH level.
C τ ON voltage 1	V _{thON2}	0.7	_	_	٧	Verifies : ex. mute trans. drive current is ON.
C τ OFF voltage 1	V _{thOFF2}	_	_	1.3	٧	Verifies : ex. mute trans. drive current in OFF.
C τ ON voltage 2	V _{thON3}	_	_	1.10	٧	Verifies : output voltage is at BIAS level.
C τ OFF voltage 2	V _{thOFF3}	1.64	_	_	٧	Verifies : output voltage is at HIGH level.
Ext. mute Tr. drive current	Імите	1.6	2.3	3.0	mA	Converted from current at 100 Ω
High-level output voltage	Vон	4.0	4.2	_	V	GAIN = 6 dB UP (10 k Ω EXTERNAL) Positive phase input = 5 V, negative phase input = 0 V Opposite side = bias OUT
Low-level output voltage	Vol	_	0.8	1.0	V	GAIN = 6 dB UP (10 k Ω EXTERNAL) Positive phase input = 0 V, negative phase input = 5 V Opposite side = BIAS OUT
Closed loop voltage gain	Gvc	-10.8	-7.8	-4.8	dB	V _{IN} = 1kHz, 1V _{rms}
Frequency characteristics 1	fc1	-10.8	-7.8	-4.8	dB	V _{IN} = 15kHz, 1V _{rms}
Frequency characteristics 2	fc2	-21	-16	-11	dB	V _{IN} = 40kHz, 1V _{rms}
Mute attenuation	ATT	80	_	_	dB	VIN = 1kHz, 1V _{rms}
Crosstalk	CT	_	95	_	dB	Vin = 1kHz, 1V _{rms}
Total harmonic distortion	THD	_	0.01	0.02	%	Vin = 1kHz, 1V _{rms}
Signal to noise ratio	S/N	90	100	_	dB	0 dB at 1 V _{rms} output
L-R Channel balance 1	CB1	-1	0	1	dB	Positive phase input, V _{IN} = 1 kHz, 1 V _{rms}
L-R Channel balance 2	CB2	-1	0	1	dB	Negative phase input, V _{IN} = 1 kHz, 1 V _{rms}
Differential balance	Gvв	45	55	_	dB	Common mode input, VIN = 1 kHz, 1 Vrms

Note: A weighing filter is used when measuring AC parameters (excluding frequency characteristics). ©Not designed for radiation resistance.

Measruement circuit

Note 1: Arrows indicate the positive current direction.

Note 2: Unless otherwise noted, AC input $(V_{IN}) = 1 \text{ kHz}$ sine waves.

Note 3: Unless otherwise noted, SW8 = Off.

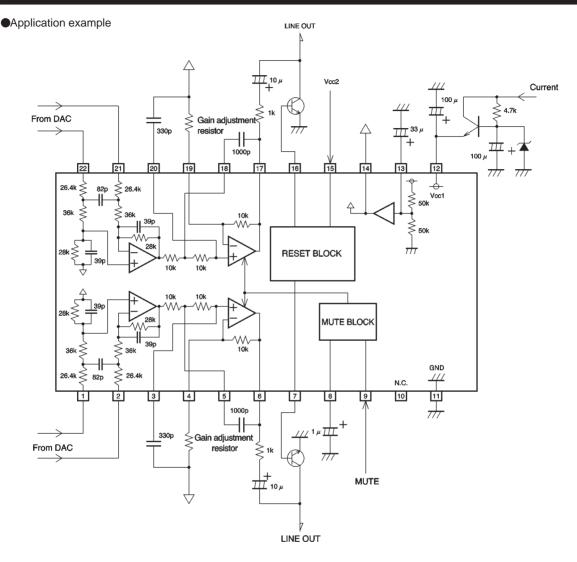


Fig. 2

Operation notes

- (1) When the MUTE pin voltage reaches 1.5V or higher, the output voltage is muted and the bias level is output.
- (2) Frequency characteristics can be changed by adjusting the capacitor attached to pin 3 (pin 20) or pin 5 (pin 18).
- (3) Gain can be changed by attaching a resistor to pin 4 (pin 19).
- (4) Attach a transistor to pin 7 (pin 16) to mute popping sounds. Recommended transistor: 2SD1781K

- (5) The reset block idling power supply for pin 15 should be left on as it prevents popping sounds.
- (6) To prevent popping sounds due to sudden fluctuation in the power supply voltage, configure a ripple filter.
- (7) To prevent popping sounds due to sudden changes in the mute pin voltage, connect pin 8 to a $1\mu F$ (approx.) capacitor.
- (8) Attach a by-pass capacitor (approx. $0.1\mu F$) at the base of the IC between the power supply.

•Electrical characteristic curve

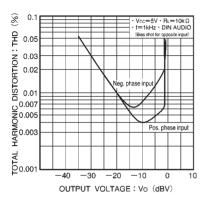
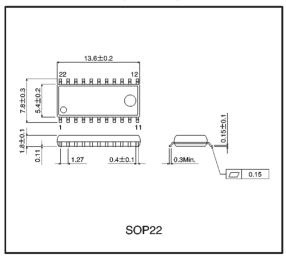



Fig. 3 Output voltage vs. distortion

External dimensions (Units: mm)

