

Optical diaga Sole F供应商

自出货

Post amplifier applicable with 1-bit D / A converter BH3562F

The BH3562F is a post amplifier applicable with 1-bit D/A converter for compact disc players.

Applications

Portable CD players, etc.

Features

- 1) 2-chancel analog filter IC for 1-bit D/A converts.
- Internal partial CR for two channels (left and right) LPF.
- 3) Operates on a single power supply.
- 4) Operates on a power supply voltage as low as 3.1V.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	5.5	V
Power dissipation	Pd	450*	mW
Operating temperature	Topr	-35~+85	Ĵ
Storage temperature	Tstg	-55~+150	Ĵ

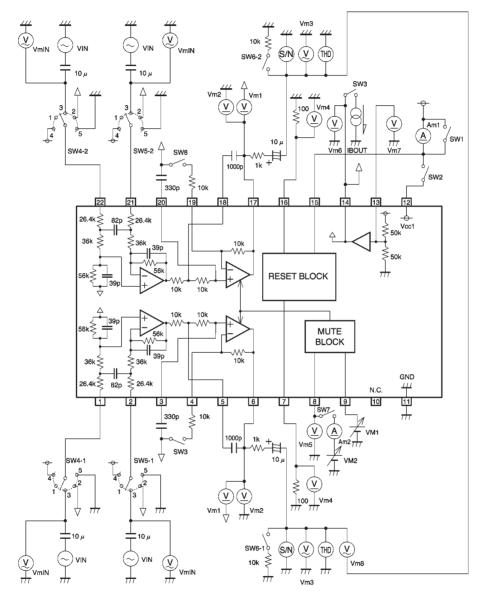

* Reduced by 4.5 mW for each increase in Ta of 1°C over 25°C.

•Recommended operating conditions (Ta = 25° C)

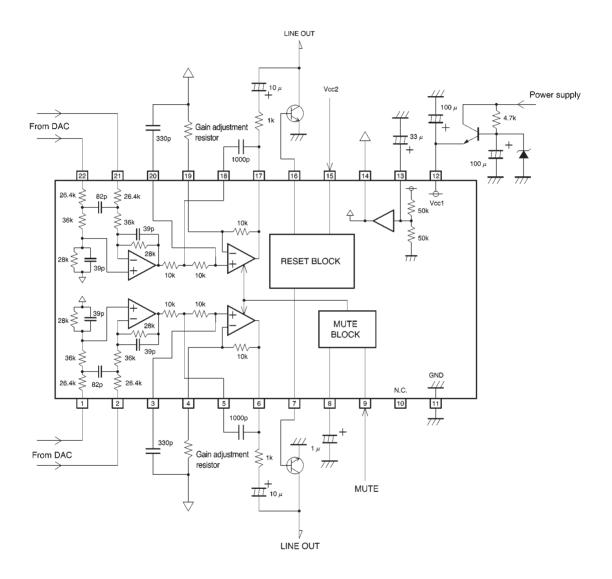
Parameter	Symbol	Limits	Unit	
Power supply voltage 1	Vcc1	3.1~5.5	V	
Power supply voltage 2	Vcc2	2.0~5.5	V	

Block diagram

Pin descriptions


Pin No.	Pin name	Function		
1	IN1 (+)	Channel 1 positive input		
2	IN1 (—)	Channel 1 negative input		
3	FILTER 1-1	Filter setting (1-1)		
4	GAIN 1	Gain adjustment (1)		
5	FILTER 2-1	Filter setting (2-1)		
6	OUT 1	Channel 1 output		
7	OUTMUTE 1	Output mute transistor drive (1)		
8	Сτ	Attached capacitor for setting the mute time constant		
9	MUTE	Mute control		
10	N.C.	-		
11	GND	Ground		
12	Vcc1	Power supply		
13	BIAS IN	Bias input		
14	BIAS OUT	Bias output		
15	Vcc2	Reset block idling power supply		
16	OUTMUTE 2	Output mute transistor drive (2)		
17	OUT 2	Channel 2 output		
18	FILTER 2-2	Filter setting (2-2)		
19	GAIN 2	Gain adjustment (2)		
20	FILTER 1 - 2	Filter setting (1-2)		
21	IN2 (—)	Channel 2 negative input		
22	IN2 (+)	Channel 2 positive input		

Electrical characteristics (unless oth	erwise n	oted, Ta	= 25°C,	Vcc1 = 2	5°C, Vcc2 = 3.5V, RL = 10kΩ)
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current (1)	I Q1	3.0	4.5	6.0	mA	MUTE OFF, R∟=∞
Quiescent current (2)	lQ2	7	10	13	mA	MUTE ON, R₁=∞
Standby current (1)	ls1	—	0	1	μA	MUTE OFF, RL=∞, Vcc1 OFF
Standby current (2)	Is2	_	0	1	μA	MUTE ON, RL=∞, VCC1 OFF
Offset voltage (1)	V _{off2}	-15	0	15	mV	MUTE OFF, reference BIAS OUTPUT
Offset voltage (2)	V _{off2}	-15	0	15	mV	MUTE ON, reference BIAS OUTPUT
Bias voltage	Vво	1.60	1.75	1.90	V	
Bias voltage, load regulation 1	ΔV_{BO1}	—	—	50	mV	$I_B=+5mA$ (discharge)
Bias voltage, load regulation 2	ΔV_{BO2}	_	—	50	mV	I _B =−5mA (intake)
C τ source current	Min.	10.5	14.0	17.5	μA	C τ = 1.4 V, MUTE OFF
C τ sink current	Mout	10.5	14.0	17.5	μA	C <i>τ</i> = 1.4 V, MUTE ON
C τ sink / source current ratio	OUT / IN	0.8	1	1.2	_	
MUTE ON voltage	VthON1	1.6	—	-	V	Verifies : output voltage is at BIAS level.
MUTE OFF voltage	VthOFF1	_	_	1.2	V	Verifies : output voltage is at HIGH level.
C τ ON voltage (1)	VthON2	0.7	-	—	V	Verifies : ext. mute trans. drive current is ON.
C τ OFF voltage (1)	VthOFF2	_	-	1.3	V	Verifies : ext. mute trans. drive current in OFF.
C τ ON voltage (2)	V _{thON3}	_	-	1.10	V	Verifies : output voltage is at BIAS level.
C τ voltage (2)	VthOFF3	1.64	—	-	V	Verifies : output voltage is at HIGH level.
External mute transistor current	Імите	1.0	1.5	2.0	mA	Converted from current at 100Ω
Output high level voltage	Vон	2.55	2.70	_	v	GAIN = 6 dB UP (10 k Ω external) Pos. phase input =3.5 V, neg. phase input 0 V Opposite side = BIAS OUT
Output low level voltage	Vol	_	0.75	0.90	v	GAIN = 6 dB UP (10 k Ω external) Pos. phase input =0 V, neg. phase input 3.5 V Opposite side = BIAS OUT
Close loop voltage gain	Gvc	-10.8	-7.8	-4.8	dB	VIN=1kHz, 0.5Vms
Frequency characteristics (1)	fc1	-10.8	-7.8	-4.8	dB	VIN=15kHz, 0.5Vrms
Frequency characteristics (2)	fc2	-21	-16	-11	dB	VIN=40kHz, 0.5Vrms
Mute attenuation	ATT	80	-	-	dB	VIN=1kHz, 0.5Vrms
Crosstalk	СТ	_	90	-	dB	VIN=1kHz, 0.5Vms
Total harmonic distortion	THD	_	0.01	0.02	%	VIN=1kHz, 0.5Vms
Signal to noise ratio	S/N	90	100	-	dB	0 dB at 1 Vrms output
L-R Channel balance (1)	CB1	-1	0	1	dB	Positive phase input, V _{IN} = 1 kHz, 0.5 V _{rms}
L-R Channel balance (2)	CB2	-1	0	1	dB	Negative phase input, V _{IN} = 1 kHz, 0.5 V _{rms}
		45		_	1	


•Electrical characteristics (unless otherwise noted, Ta = 25° C, Vcc1 = 25° C, Vcc2 = 3.5V, RL = 10k Ω)

Note: A weighing filter is used when measuring AC parameters (excluding frequency characteristics). \bigcirc Not designed for radiation resistance.

Measurement circuit

Note 1: Arrows indicate the positive current direction. Note 2: Unless otherwise noted, AC input (VIN) = 1 kHz sine waves. Note 3: Unless otherwise noted, SW8 = Off.

Operation notes

(1) When the MUTE pin voltage reaches 1.5V or higher, the output voltage is muted and the bias level is output.

(2) Frequency characteristics can be changed by adjusting the capacitor attached to pin 3 (20 pin) or pin 5 (18 pin).

(3) Gain can be changed by attaching a resistor to pin 4 (19 pin).

(4) Attach a transistor to pin 7 (16 pin) to mute popping sounds. Recommended transistor: 2SD1781K

(5) The reset block idling power supply for pin 15 should be left on as it prevents popping sounds.

(6) To prevent popping sounds due to sudden fluctuation in the power supply voltage, attach a ripple filter.

(7) To prevent popping sounds due to sudden changes in the mute pin voltage, connect pin 8 to $1\mu F$ (approx.) capacitor.

(8) Attach a by-pass capacitor (approx. $0.1\mu F$) at the base of the IC between the power supply.

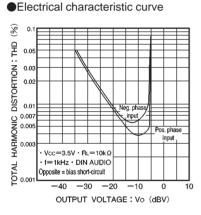
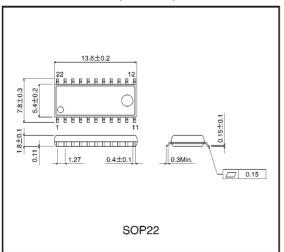



Fig. 3 Output voltage vs. distortion

