Optical diagg G505K供应商

# PWM driver for CD and MD players

The BH6505K is a 4-channel PWM driver designed for CD and MD player motor and actuator drives. The power MOS-FET output stage allows for applications with low power consumption. This IC also has a charge pump circuit and standard operational amplifier (needed for power MOSFET gate drives), and so supports a wide spectrum of applications.

### Applications

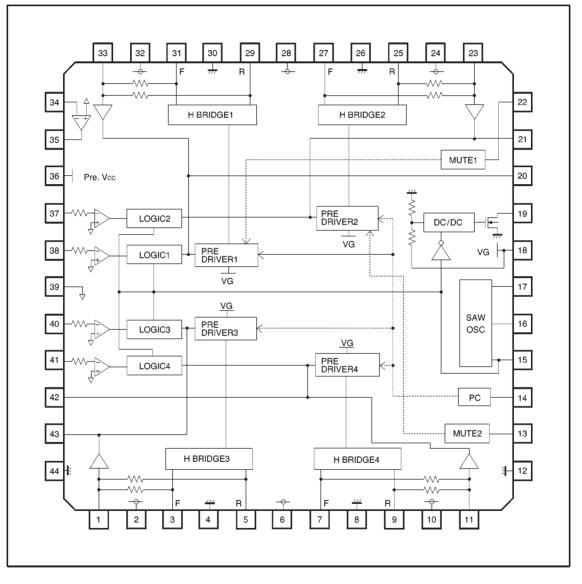
Portable CD players, MD players

### Features

- 1) Low power consumption.
- 2) A minimum of attached components.
- 3) Good gain precision because of the voltage feedback circuit.
- 4) Internal mute function for channels 1 and 2.
- 5) Allows for free-running and clock synchronization operation.
- 6) Internal standard operational amplifier.
- 7) Internal charge pump circuit for gate drive.

### •Absolute maximum ratings (Ta = $25^{\circ}$ C)

| Parameter                      | Symbol     | Limits            | Unit |
|--------------------------------|------------|-------------------|------|
| H bridge supply voltage        | BATTERY    | 7.50.0            | V    |
| Control circuit supply voltage | Pre.Vcc    | 7                 | V    |
| Predriver supply voltage       | VG (pin18) | 7                 | V    |
| Driver output current          | lo         | 500               | mA   |
| Power dissipation              | Pd         | 500* <sup>1</sup> | mW   |
| Operating temperature          | Topr       | -30~+85           | °C   |
| Storage temperature            | Tstg       | -55~+125          | C    |


\*1 Reduced by 5.0 mW for each increase in Ta of 1°C over 25°C.

### Recommended operating conditions

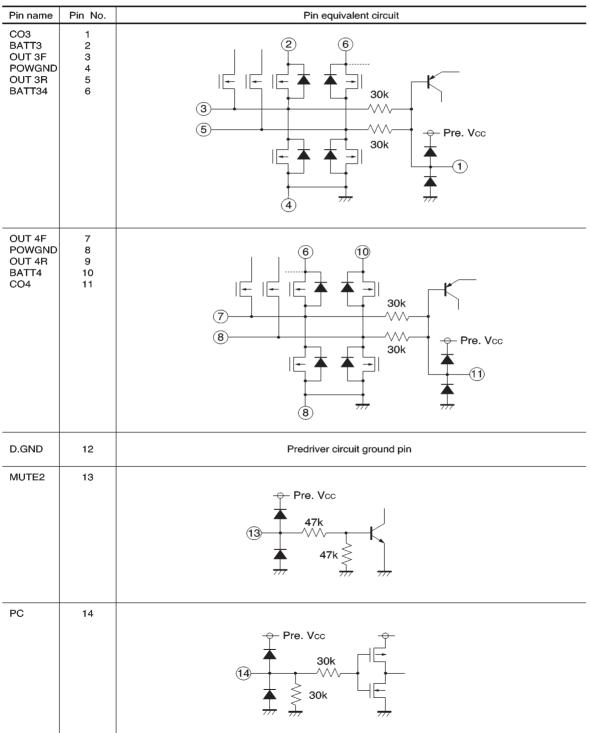
| Parameter                      | Symbol     | Min.            | Тур. | Max. | Unit |
|--------------------------------|------------|-----------------|------|------|------|
| H bridge supply voltage        | BATTERY    | 1.6             | 2.4  | 4.5  | V    |
| Control circuit supply voltage | Pre.Vcc    | 2.7             | 3.0  | 4.5  | V    |
| Predriver supply voltage*2     | VG (pin18) | BATTERY<br>+1.6 | 6.5  | 6.9  | V    |
| Ambient temperature            | Та         | -10             | 25   | 70   | Ĵ    |

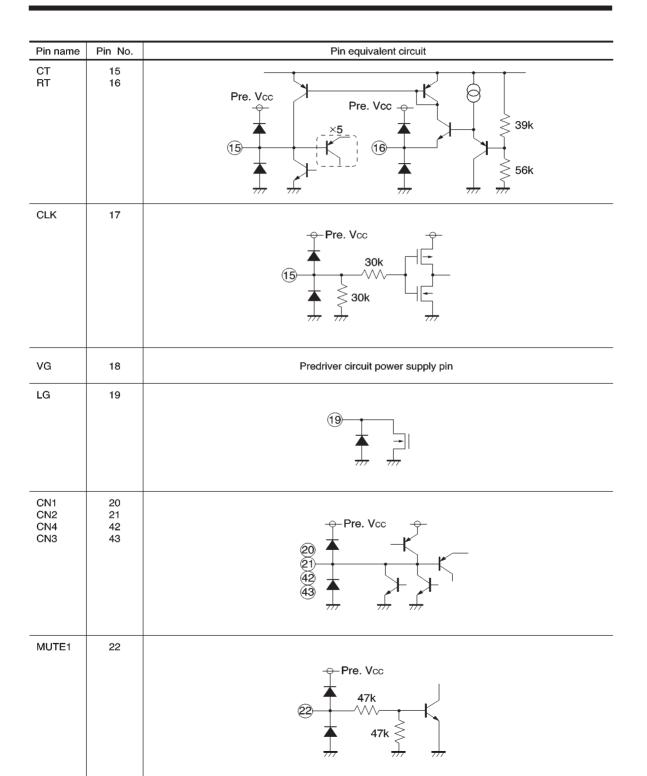
When voltage is supplied externally without using an internal DC / DC converter.

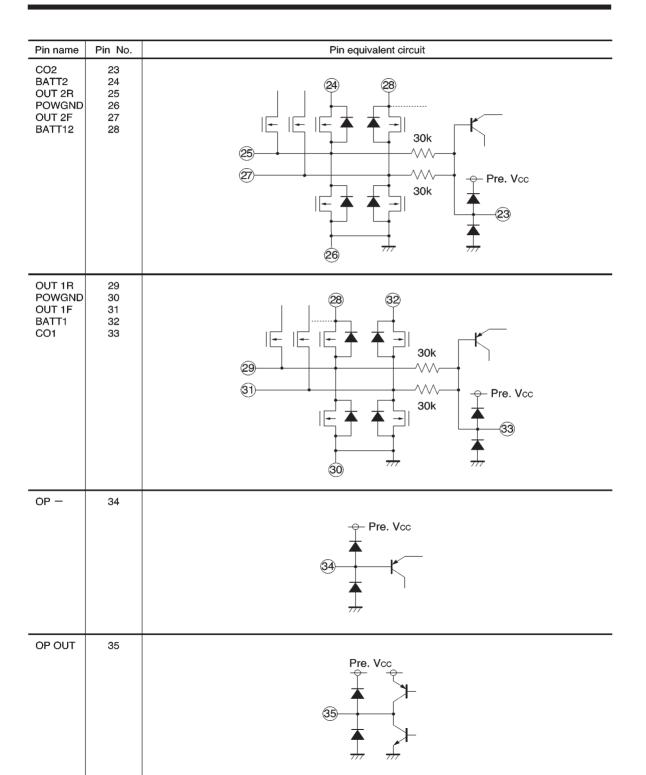
### Block diagram



# BH6505K


# BH6505K


### Pin descriptions


| Pin No. | Pin name | Function                                   | Pin No. | Pin name | Function                                    |
|---------|----------|--------------------------------------------|---------|----------|---------------------------------------------|
| 1       | CO3      | Channel 3 voltage feedback filter          | 23      | CO2      | Channel 2 voltage feedback filter           |
| 2       | BATT3    | Power amplifier power supply input         | 24      | BATT2    | Power amplifier power supply input          |
| 3       | OUT 3F   | Channel 3 positive output                  | 25      | OUT 2R   | Channel 2 negative output                   |
| 4       | POWGND   | Power amplifier power supply ground        | 26      | POWGND   | Power amplifier power supply ground         |
| 5       | OUT 3R   | Channel 3 negative output                  | 27      | OUT 2F   | Channel 2 positive output                   |
| 6       | BATT34   | Power amplifier power supply input         | 28      | BATT12   | Power amplifier power supply input          |
| 7       | OUT 4F   | Channel 4 positive output                  | 29      | OUT 1R   | Channel 1 negative output                   |
| 8       | POWGND   | Power amplifier power supply ground        | 30      | POWGND   | Power amplifier power supply ground         |
| 9       | OUT 4R   | Channel 4 negative output                  | 31      | OUT 1F   | Channel 1 positive output                   |
| 10      | BATT 4   | Power amplifier power supply input         | 32      | BATT1    | Power amplifier power supply input          |
| 11      | CO4      | Channel 4 voltage feedback filter          | 33      | CO1      | Channel 1 voltage feedback filter           |
| 12      | D.GND    | Predrive circuit power supply ground       | 34      | OP-      | Operational amplifier negative input        |
| 13      | MUTE2    | Channel 2 mute                             | 35      | OP OUT   | Operational amplifier output                |
| 14      | PC       | All-driver output mute                     | 36      | Pre.Vcc  | Input of the control circuit power supply   |
| 15      | СТ       | Triangular wave output                     | 37      | ERR2     | Input of the channel 2 control signal       |
| 16      | RT       | Setting the charging current               | 38      | ERR1     | Input of the channel 1 control signal       |
| 17      | CLK      | Input for synchronizing the external clock | 39      | VC       | Reference voltage input                     |
| 18      | VG       | Input of the predrive circuit power supply | 40      | ERR3     | Input of the channel 3 control signal       |
| 19      | LG       | Attaching the DC / DC converter            | 41      | ERR4     | Input of the channel 4 control signal       |
| 20      | CN1      | Channel 1 phase compensation filter        | 42      | CN4      | Channel 4 phase compensation filter         |
| 21      | CN2      | Channel 2 phase compensation filter        | 43      | CN3      | Channel 3 phase compensation filter         |
| 22      | MUTE1    | Channel 1 mute                             | 44      | Pre.GND  | Ground for the control circuit power supply |

Note: Positive and negative output of the driver is relative to the polarity of the input pins.

### Input / output circuits

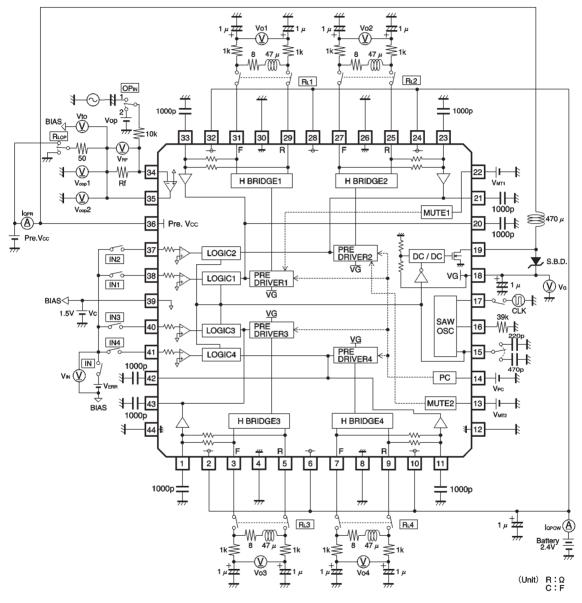






| Pin name                     | Pin No.              | Pin equivalent circuit                                                                                       |
|------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------|
| Pre.Vcc                      | 36                   | Control circuit power supply pin                                                                             |
| ERR1<br>ERR2<br>ERR3<br>ERR4 | 38<br>37<br>40<br>41 | $\begin{array}{c} \bullet  \text{Pre. Vcc} \\ \hline 33 \\ \hline 40 \\ \hline 41 \\ \hline 777 \end{array}$ |
| VC                           | 39                   | 39<br>777<br>Pre. Vcc<br>×4<br>5k<br>5k                                                                      |
| Pre.GND                      | 44                   | Control circuit ground pin                                                                                   |

# **BH6505K**


| Parameter                        |                                          | Symbol  | Min. | Тур. | Max. | Unit | Conditions                                                  |
|----------------------------------|------------------------------------------|---------|------|------|------|------|-------------------------------------------------------------|
| Standby current                  |                                          | lsт     | -    | -    | 3    | μA   | Pre.Vcc=OFF                                                 |
| Quiescent current dissipation    |                                          | lcc1    | -    | 4.5  | 9    | mA   | Including DC / DC converter coil current                    |
| Operating current                |                                          | lcc2    | _    | 7    | 14   | mA   | 4-channel drive<br>Including DC / DC converter coil current |
| (PWN                             | 1 driver $ angle$                        |         |      |      |      |      |                                                             |
|                                  | Output-on resistance                     | Ron     | —    | 1.3  | 2.0  | Ω    | Sum of top and bottom-on resistance                         |
| CH1<br>CH2                       | Input offset voltage                     | Voi     | -5.0 | 0    | 5.0  | mV   |                                                             |
| CH3                              | Output offset voltage                    | Voo     | -35  | 0    | 35   | mV   |                                                             |
| CH4                              | Voltage gain                             | GVC1-4  | 6.5  | 8.5  | 10.5 | dB   |                                                             |
|                                  | Positive / negative voltage gain differ. | Gvc     | -1.5 | 0    | 1.5  | dB   |                                                             |
| (DC /                            | DC converter*1>                          |         |      |      |      |      |                                                             |
| Outpu                            | it voltage                               | VG      | 6.1  | 6.5  | 6.9  | V    |                                                             |
| Triang                           | jular wave generator                     |         | 1    |      |      |      |                                                             |
| Free-running oscill. frequency 1 |                                          | fosc1   | -    | 140  | -    | kHz  |                                                             |
| Synch. signal input frequency 1  |                                          | fcLk1   | 150  | 176  | 200  | kHz  | RT=39kΩ, CT=220pF                                           |
| Free-running oscill. frequency 2 |                                          | fosc2   | -    | 60   | -    | kHz  |                                                             |
| Synch                            | n. signal input frequency 2              | fclk2   | 78   | 88   | 98   | kHz  | - RT=39kΩ, CT=470pF                                         |
| (Oper                            | ational amplifier $ angle$               |         | 1    |      |      |      |                                                             |
| Input                            | bias current                             | BIAS    | _    | _    | 300  | nA   |                                                             |
| Input                            | offset voltage                           | VOIOP   | -5.5 | 0    | 5.5  | mV   |                                                             |
| Outpu                            | t high level voltage                     | Vонор   | 2.8  | _    | -    | V    | RL=OPEN                                                     |
| Outpu                            | t low level voltage                      | Volop   | _    | _    | 0.2  | V    | RL=OPEN                                                     |
| Outpu                            | t drive current (source)                 | lsou    | 0.3  | 0.5  | -    | mA   | 50Ωat GND                                                   |
| Outpu                            | t drive current (sink)                   | Isin    | 1    | 3    | -    | mA   | $50\Omega$ at V <sub>CC</sub>                               |
| Open                             | loop voltage gain                        | Gvo     | _    | 70   | -    | dB   | VIN=-75dBV, f=1kHz                                          |
| Slew rate                        |                                          | SR      | _    | 0.5  | -    | V/µs |                                                             |
| (Cont                            | rol pin threshold $ angle$               |         |      | I    |      |      | 1                                                           |
| MUTE1-on level input voltage     |                                          | VMT10N  | 2.2  | _    | -    | V    | Channel 1 muted at the high level                           |
| MUTE1-off level input voltage    |                                          | VMT10FF | -    | _    | 0.5  | V    |                                                             |
| MUTE2-on level input voltage     |                                          | VMT20N  | 2.2  | _    | -    | v    | Channel 2 muted at the high level                           |
| MUTE                             | 2-off level input voltage                | VMT2OFF | -    | _    | 0.5  | V    |                                                             |
| PC-or                            | level input voltage                      | VPCON   | 2.2  | -    | -    | V    | All channels muted at the high level                        |
| PC-off level input voltage       |                                          | VPCOFF  | _    | _    | 0.5  | v    |                                                             |

• Electrical characteristics (unless otherwise noted,  $Ta = 25^{\circ}C$ , BATTERY = 2.4V, Pre. Voc = 3.0V, Voc = 1.5V

\*1 DC / DC converter circuit

Pre.VCC is raised to 6.5 V by attaching an inductance, Schottky barrier diode, and capacitor. This voltage is the power supply (VG) for the predriver circuit.

### Measurement circuit

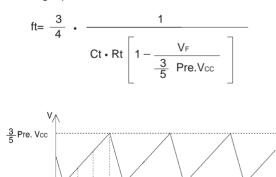


### Circuit operation

### (1) PWM driver

This is an H bridge driver with four N-type FETs in the output stage. Output polarity and PWM duty vary in proportion to the input differential voltage between V<sub>c</sub>, and to the absolute value. The load is direct-PWM-driven by the square wave with this varying duty.

This is a voltage feedback driver and so delivers a constant gain regardless of battery voltage variation.


(2) DC/DC converter

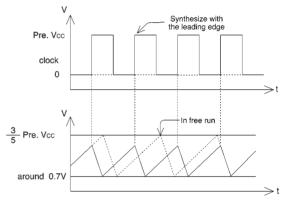
The DC/DC converter that generates the voltage needed to drive the FETs of the output-stage H bridge. Pre.Vcc is raised to 6.5V by attaching an inductance, Schottky barrier diode, and capacitor.

- (3) Triangular wave generator
- 1) Freerunning

VF=0.7V

The free-running oscillation frequency of the triangular waves can be set with an attached resistor (Rt, between pin 16 and the ground) and capacitor (Ct, between pin 15 and the ground). The triangular wave has an amplitude of  $3/5 \times \text{Pre.Vcc}$  at the top and VF (approximately 0.7V) at the bottom. The ratio between rise time and fall time is 3 : 1. Free-running frequency (ft) is determined with the following equation:




Freerunning frequency triangular wave form

### 2) Clock synchronization

The triangular wave can be synchronized by inputting to the CLK pin (17 pin) a pulse wave equal to 0–Pre.Vcc (Vp-p). The following precautions should be kept in mind: • The amplitude of the triangular wave decreases as the clock frequency rises.

• The PWM driver is a voltage feedback driver, which should preclude any problems unless the setting is such that the triangular wave has an extremely small amplitude.

• As mentioned above, a capacitor and resistor are also required during clock synchronization.

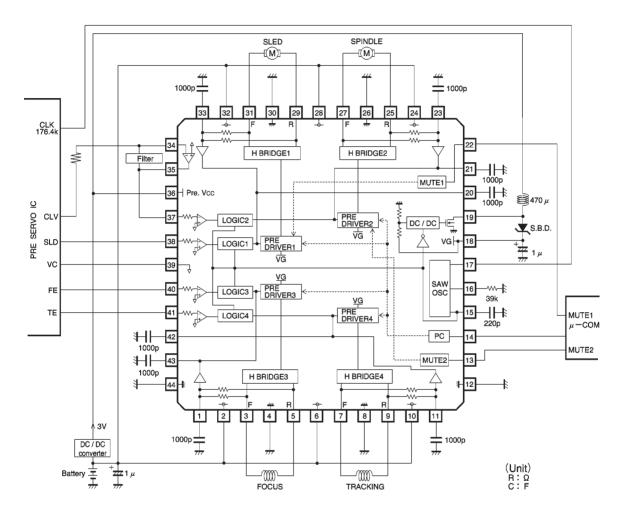
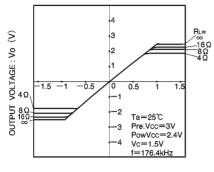


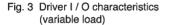
The triangular waveform during clock synchronization

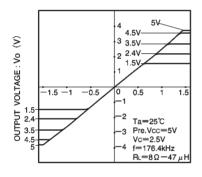
### Operation notes

Attach a bypass capacitor (roughly  $1\mu F)$  to the power supply, at the base of the IC.

### Application example

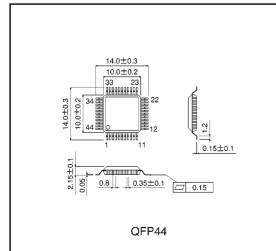


Fig. 2

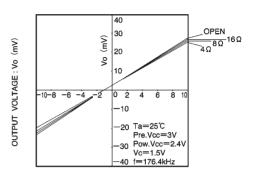

## BH6505K

### Electrical characteristic curves



INPUT VOLTAGE : VIN (V)




INPUT VOLTAGE : VIN (V)

Fig. 5 I / O characteristics (variable power supply)







INPUT VOLTAGE : VIN (mV)

Fig. 4 I / O characteristics near the dead zone (variable load)