会出货

4-channel PWM driver for CD and MD players BH6510FS

The BH6510FS is a 4-channel PWM driver for CD and MD player motors and actuators. The power MOSFET in the output stage assures low power consumption for applications.

ApplicationsCD and MD players

Features

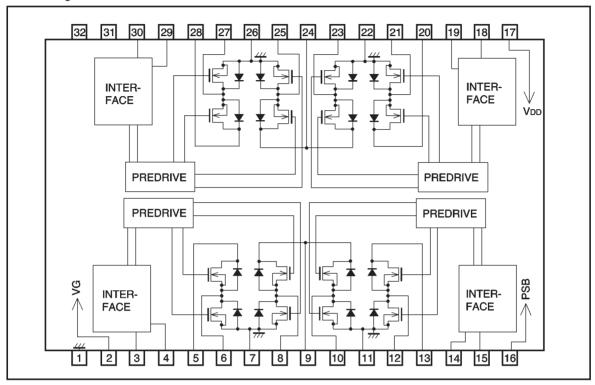
- 1) Internal 4-channel power MOS H-bridge.
- 2) Adaptable for PWM input.
- 3) Low ON resistance.

- 4) Low power consumption.
- 5) 32-pin SSOP-A package. Compact package.

●Absolute maximum ratings (Ta = 25°C)

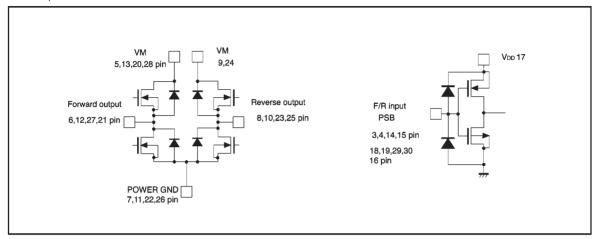
Parameter	Symbol	Limits	Unit	
H-bridge supply voltage	VM	9	V	
Control circuit supply voltage	V _{DD}	9	V	
Predriver supply voltage	VG (pin2)	12	V	
Driver output current	lo (ch1, ch3) lo (ch2, ch4)	500 300*1	mA	
Power dissipation	Pd	850* ²	mW	
Operating temperature	Topr	−30~+85	°C	
Storage temperature	Tstg	−55∼+150	°C	

^{*1 500} msec


Recommended operating conditions

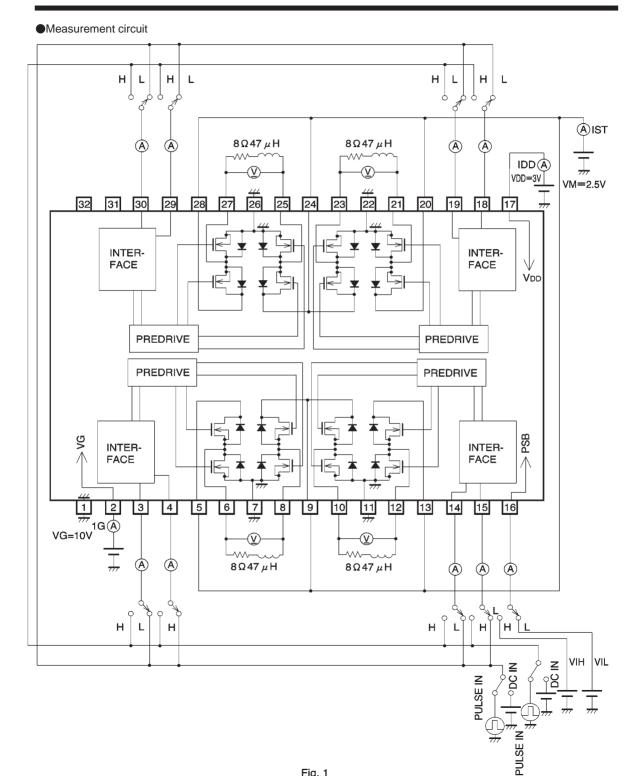
Parameter	Symbol	Min.	Тур.	Max.	Unit
H-bridge supply voltage	VM	1.6	5.0	5.5	V
Control circuit supply voltage	V _{DD}	2.7	3.0	5.5	٧
Predriver supply voltage	VG (pin2)	VM+3.0	10	11.5	٧
Ambient temperature	Ta	-35	25	85	°C
Pulse input frequency	fin	_	176.4	200	kHz

^{*2} Reduced by 6.8 mW for each increase in Ta of 1 $^{\circ}\!\!\!\!\!\mathrm{C}$ over 25 $^{\circ}\!\!\!\!\!\mathrm{C}$.


■Block diagram

Pin descriptions

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	GND	Predrive ground	17	N.C.	_
2	VG	Gate voltage supply	18	N.C.	_
3	IN4R	Channel 4 reverse input	19	IN2R	Channel 2 reverse input
4	IN4F	Channel 4 forward input	20	IN2F	Channel 2 forward input
5	VM4	Power supply	21	VM2	Power supply
6	OUT4F	Channel 4 forward output	22	OUT2F	Channel 2 forward output
7	PGND4	Power ground	23	PGND2	Power ground
8	OUT4R	Channel 4 reverse output	24	OUT2R	Channel 2 reverse output
9	VM34	Power supply	25	VM12	Power supply
10	OUT3R	Channel 3 reverse output	26	OUT1R	Channel 1 reverse output
11	PGND3	Power ground	27	PGND1	Power ground
12	OUT3F	Channel 3 forward output	28	OUT1F	Channel 1 forward output
13	VM3	Power supply	29	VM1	Power supply
14	IN3F	Channel 3 forward input	30	IN1F	Channel 1 forward input
15	IN3R	Channel 3 reverse input	31	IN1R	Channel 1 reverse input
16	PSB	Power cut	32	V _{DD}	Predrive power supply


●Pin equivalent circuit

•Electrical characteristics (unless otherwise noted, Ta = 25°C, V_{M} = 2.5V, V_{DD} = 3V, V_{G} = 10V, f_{IN} = 176kHz, $RL = 8\Omega - 47\mu H$)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
⟨H-bridge supply current⟩							
No input	İst	_	_	1	μΑ	V _{DD} =OFF, VM=5V	
⟨Control supply current⟩							
No input	IDD1	_	_	1	μΑ		
Operating	IDD2	_	6	70	μΑ	IDD1 and four channels driven simultaneously	
⟨Predriver supply voltage⟩							
No input	lg ₁	_	_	1	μА		
Operating	lg ₂	_	1.5	2.2	mA	IG1 and four channels driven simultaneously	
〈Logic input characteristics〉							
Input high level voltage	Vıн	V _{DD} -0.6	_	_	V		
Input low level voltage	VIL	_	_	0.6	V		
Input high level current	Ін	_	_	1	μΑ		
Input low level current	lı∟	-1	_	_	μΑ		
Output ON resistance	RON1, 3	_	0.8	1.2	Ω	Sum of top and bottom ON resistance	
	RON2, 4		1.2	2.0	72	Sum or top and bottom On resistance	
Output delay time	trise	_	0.2	1	μs		
	t FALL	_	0.2	1	μs		

ONot designed for radiation resistance.

Circuit operation

○PWM driver

The output stage is an H-bridge driver with four N-type FET circuits. Output PWM duty is changed according to input PWM duty. This pulse drives the load (direct PWM).

Driver truth table

PSB*	IN1∼4F	IN1∼4R	OUT1~4F	OUT1~4R
Н	L	L	L	L
Н	L	Н	L	Н
Н	Н	L	Н	L
Н	Н	Н	L	L
L	Х	Х	High-Z	High-Z

^{*} Output turns off (high impedance) when PSB = LOW (power OFF), regardless of input.

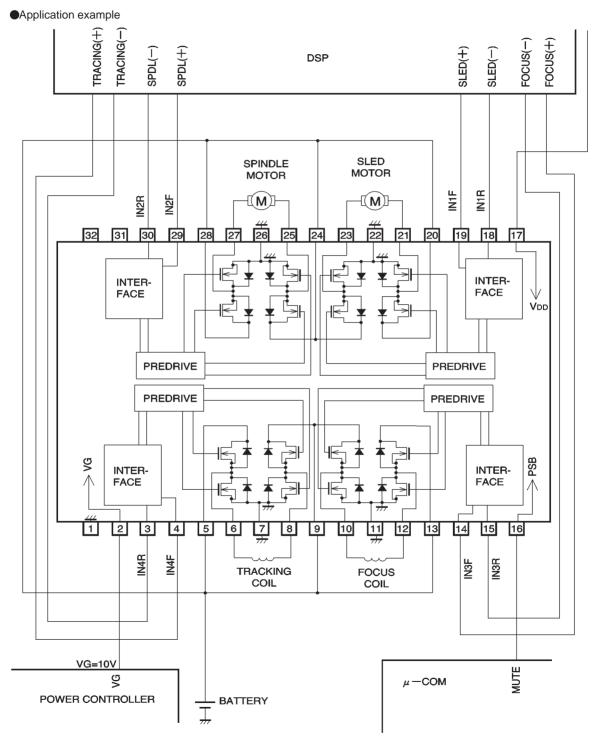


Fig. 2

Operation notes

This IC uses three power supplies: V_{DD}, VG and VM. Below are the blocks to which each power supply connects.

VDD: control block (INTERFACE)

VG : pre drive block VM : H-bridge block As starting VG and VM when V_{DD} is open could cause the top and bottom output MOS to turn on simultaneously before the previous stage logic stabilizes, be sure to design so that V_{DD} starts up first.

Electrical characteristic curves

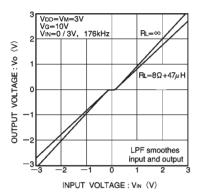


Fig. 3 I/O characteristics (CH1, CH3)

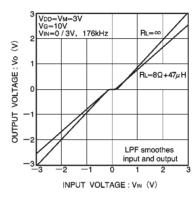


Fig. 4 1/O characteristics (CH2, CH4)

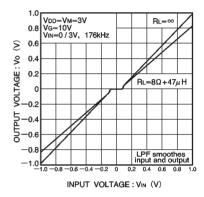


Fig. 5 I / O characteristics during ultralow input (CH1, CH3)

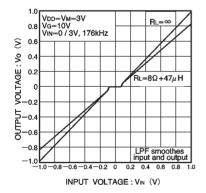


Fig. 6 1 / O characteristics during ultralow input (CH2, CH4)

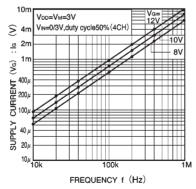


Fig. 7 Input frequency vs. V_G pin supply current

●External dimensions (Units: mm)

