DATA SHEET

BLW77
 HF／VHF power transistor

HF/VHF power transistor

DESCRIPTION

N-P-N silicon planar epitaxial transistor intended for use in class-AB or class-B operated high power transmitters in the h.f. and v.h.f. bands. The transistor presents excellent performance as a linear amplifier in the h.f. band. It is resistance stabilized and is guaranteed to withstand severe load
mismatch conditions. Transistors are delivered in matched $\mathrm{h}_{\text {FE }}$ groups.

The transistor has a $1 / 2$ " flange envelope with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA

R.F. performance up to $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$

MODE OF OPERATION	V_{CE}	$\underset{\mathbf{A}}{\mathrm{I}_{\mathbf{C}(\mathrm{Zs})}}$	$\begin{gathered} \mathbf{f} \\ \mathbf{M H z} \end{gathered}$	$\begin{aligned} & P_{L} \\ & W \end{aligned}$	$\begin{aligned} & G_{p} \\ & d B \end{aligned}$	$\begin{aligned} & \eta \\ & \% \end{aligned}$	$\begin{aligned} & d_{3} \\ & d B \end{aligned}$
s.s.b. (class-AB)	28	0,1	1,6-28	$\begin{gathered} 15-130 \\ \text { (P.E.P.) } \end{gathered}$	> 12	> 37,5 ${ }^{(1)}$	<-30
c.w. (class-B)	28	-	87,5	130	typ. 7,5	typ. 75	-

Note

1. At 130 W P.E.P.

PIN CONFIGURATION

Fig. 1 Simplified outline. SOT121B.

PINNING - SOT121B.

PIN	DESCRIPTION
1	collector
2	emitter
3	base
4	emitter

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage ($\mathrm{V}_{\mathrm{BE}}=0$)

peak value

Collector-emitter voltage (open base)
Emitter-base voltage (open collector)
Collector current (average)
Collector current (peak value); $\mathrm{f}>1 \mathrm{MHz}$
R.F. power dissipation ($\mathrm{f}>1 \mathrm{MHz}$;); $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$

Storage temperature
Operating junction temperature

$V_{\text {CESM }}$	max.	70	V
$\mathrm{~V}_{\text {CEO }}$	max.	35	V
$\mathrm{~V}_{\text {EBO }}$	max.	4	V
$\mathrm{I}_{\mathrm{C}(\mathrm{AV})}$	max.	12	A
I_{CM}	max.	30	A
$\mathrm{P}_{\text {rf }}$	max.	245	W
$\mathrm{~T}_{\text {stg }}$	-65 to $+150{ }^{\circ} \mathrm{C}$		
T_{j}	max.	$200^{\circ} \mathrm{C}$	

Fig. 2 D.C. SOAR.

THERMAL RESISTANCE

(dissipation $=100 \mathrm{~W} ; \mathrm{T}_{\mathrm{mb}}=90^{\circ} \mathrm{C}$, i.e. $\mathrm{T}_{\mathrm{h}}=70^{\circ} \mathrm{C}$)
From junction to mounting base (d.c. dissipation)
From junction to mounting base (r.f. dissipation)
From mounting base to heatsink

$R_{\text {th } j-m b(d c)}$	$=$	$1,03 \mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\text {th } j-\mathrm{mb}(\mathrm{ff})}$	$=$	$0,71 \mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{mb}-\mathrm{h}}$	$=$	$0,2 \mathrm{~K} / \mathrm{W}$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Collector-emitter breakdown voltage

$$
\begin{aligned}
& \quad \mathrm{V}_{\mathrm{BE}}=0 ; \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} \\
& \text { Collector-emitter breakdown voltage }
\end{aligned}
$$ open base; $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$

Emitter-base breakdown voltage

$$
\text { open collector; } \mathrm{I}_{\mathrm{E}}=20 \mathrm{~mA}
$$

Collector cut-off current

$$
V_{B E}=0 ; V_{C E}=35 V
$$

D.C. current gain ${ }^{(1)}$
$\mathrm{I}_{\mathrm{C}}=7 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$

$\mathrm{V}_{(\mathrm{BR})} \mathrm{CES}$	>	70	V
$\mathrm{V}_{(\mathrm{BR})}$ CEO	>	35	V
$V_{\text {(BR) EBO }}$	>	4	V
$\mathrm{I}_{\text {CES }}$	$<$	20	mA
$h_{\text {FE }}$	15 to 80		
$\mathrm{h}_{\text {FE1 } 1} / \mathrm{h}_{\text {FE2 }}$	<	1,2	
$\mathrm{V}_{\text {CEsat }}$	typ.	2	V
f_{T}	typ.	320	MHz
f_{T}	typ.	300	MHz
$\mathrm{C}_{\text {c }}$	typ.	255	pF
$\mathrm{Cr}_{\mathrm{re}}$	typ.	175	pF
$\mathrm{C}_{\text {cf }}$	typ.	3	pF

D.C. current gain ratio of matched devices ${ }^{(1)}$

$$
\mathrm{I}_{\mathrm{C}}=7 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

$\mathrm{V}_{(\mathrm{BR})} \mathrm{CES}$	>	70	V
$\mathrm{V}_{(\mathrm{BR})}$ CEO	>	35	V
$V_{\text {(BR) EBO }}$	>	4	V
$\mathrm{I}_{\text {CES }}$	$<$	20	mA
$h_{\text {FE }}$	15 to 80		
$\mathrm{h}_{\text {FE1 } 1} / \mathrm{h}_{\text {FE2 }}$	<	1,2	
$\mathrm{V}_{\text {CEsat }}$	typ.	2	V
f_{T}	typ.	320	MHz
f_{T}	typ.	300	MHz
$\mathrm{C}_{\text {c }}$	typ.	255	pF
$\mathrm{Cr}_{\mathrm{re}}$	typ.	175	pF
$\mathrm{C}_{\text {cf }}$	typ.	3	pF

Collector-emitter saturation voltage ${ }^{(1)}$

$$
\mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} ; \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A}
$$

$\mathrm{V}_{(\mathrm{BR})} \mathrm{CES}$	>	70	V
$\mathrm{V}_{(\mathrm{BR})}$ CEO	>	35	V
$V_{\text {(BR) EBO }}$	>	4	V
$\mathrm{I}_{\text {CES }}$	$<$	20	mA
$h_{\text {FE }}$	15 to 80		
$\mathrm{h}_{\text {FE1 } 1} / \mathrm{h}_{\text {FE2 }}$	<	1,2	
$\mathrm{V}_{\text {CEsat }}$	typ.	2	V
f_{T}	typ.	320	MHz
f_{T}	typ.	300	MHz
$\mathrm{C}_{\text {c }}$	typ.	255	pF
$\mathrm{Cr}_{\mathrm{re}}$	typ.	175	pF
$\mathrm{C}_{\text {cf }}$	typ.	3	pF

$$
\begin{aligned}
& -\mathrm{I}_{\mathrm{E}}=7 \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V} \\
& -\mathrm{I}_{\mathrm{E}}=20 \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}
\end{aligned}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}
$$

Feedback capacitance at $f=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}
$$

Collector-flange capacitance

Notes

1. Measured under pulse conditions: $\mathrm{t}_{\mathrm{p}} \leq 300 \mu \mathrm{~s} ; \delta \leq 0,02$.
2. Measured under pulse conditions: $\mathrm{t}_{\mathrm{p}} \leq 50 \mu \mathrm{~s} ; \delta \leq 0,01$.

APPLICATION INFORMATION

R.F. performance in s.s.b. class-AB operation (linear power amplifier)
$V_{C E}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{1}=28,000 \mathrm{MHz} ; \mathrm{f}_{2}=28,001 \mathrm{MHz}$

OUTPUT POWER W	G_{p} dB	$\eta_{\mathrm{dt}}(\%) \quad \mathrm{I}_{\mathrm{C}}(\mathrm{A})$ at 130 W P.E.P.		d_{3} dB	d_{5} dB	$\begin{gathered} \mathrm{I}_{\mathrm{C}(\mathrm{ZS})} \\ \mathrm{A} \end{gathered}$
15 to 130 (P.E.P.)	> 12	> 37,5	< 6,2	<-30	<-30	0,1

Fig. 8 Test circuit; s.s.b. class-AB.

List of components:

$\mathrm{C} 1=27 \mathrm{pF}$ ceramic capacitor (500 V)
$\mathrm{C} 2=100 \mathrm{pF}$ air dielectric trimmer (single insulated rotor type)
$\mathrm{C} 3=180 \mathrm{pF}$ polystyrene capacitor
$\mathrm{C} 4=\mathrm{C} 6=\mathrm{C} 9=100 \mathrm{nF}$ polyester capacitor
C5 $=100 \mathrm{pF}$ air dielectric trimmer (single non-insulated rotor type)
$\mathrm{C} 7=\mathrm{C} 8=3,9 \mathrm{nF}$ ceramic capacitor
$\mathrm{C} 10=2,2 \mu \mathrm{~F}$ moulded metallized polyester capacitor
C11 $=2 \times 180 \mathrm{pF}$ polysterene capacitors in parallel
C12 $=3 \times 56 \mathrm{pF}$ and 33 pF ceramic capacitors in parallel (500 V)
C13 $=4 \times 56 \mathrm{pF}$ and 68 pF ceramic capacitors in parallel (500 V)
C14 = 360 pF air dielectric trimmer (single insulated rotor type)
$\mathrm{C} 15=360 \mathrm{pF}$ air dielectric trimmer (single non-insulated rotor type)
L1 = $\quad 88 \mathrm{nH}$; 3 turns Cu wire ($1,0 \mathrm{~mm}$); int. dia. $9,0 \mathrm{~mm}$; length $6,1 \mathrm{~mm}$; leads $2 \times 7 \mathrm{~mm}$
L2 = L4 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
L3 $=\mathrm{L} 5=80 \mathrm{nH} ; 2,5$ turns closely wound enamelled Cu wire ($1,6 \mathrm{~mm}$); int. dia. $10,0 \mathrm{~mm}$; leads $2 \times 7 \mathrm{~mm}$
R1 $=470 \Omega$ wirewound resistor (5,5 W)
R2 $=4,7 \Omega$ wirewound potentiometer (3 W)
R3 $=0,55 \Omega$; parallel connection of $4 \times 2,2 \Omega$ carbon resistors ($\pm 5 \% ; 0,5 \mathrm{~W}$ each)
R4 $=45 \Omega$; parallel connection of $4 \times 180 \Omega$ wirewound resistors ($5,5 \mathrm{~W}$ each)
R5 $=56 \Omega(\pm 5 \%)$ carbon resistor ($0,5 \mathrm{~W}$)
R6 $=27 \Omega(\pm 5 \%)$ carbon resistor ($0,5 \mathrm{~W}$)
R7 $=4,7 \Omega(\pm 5 \%)$ carbon resistor ($0,5 \mathrm{~W}$)

$V_{C E}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}(\mathrm{ZS})}=100 \mathrm{~mA} ; \mathrm{f}_{1}=28,000 \mathrm{MHz}$;
$\mathrm{f}_{2}=28,001 \mathrm{MHz} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; typical values.

Fig. 9 Intermodulation distortion as a function of output power.(1.)

1. Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB .

$V_{C E}=28 \mathrm{~V} ; \mathrm{I}_{(Z \mathrm{ZS})}=100 \mathrm{~mA} ; \mathrm{f}_{1}=28,000 \mathrm{MHz}$;
$\mathrm{f}_{2}=28,001 \mathrm{MHz} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; typical values.

Fig. 10 Double-tone efficiency and power gain as a function of output power.

$\mathrm{V}_{C E}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}(\mathrm{ZS})}=100 \mathrm{~mA} ; \mathrm{P}_{\mathrm{L}}=130 \mathrm{~W}$;
$\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C} ; \mathrm{Z}_{\mathrm{L}}=2,5 \Omega$.

Fig. 11 Power gain as a function of frequency.

$\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}(\mathrm{ZS})}=100 \mathrm{~mA} ; \mathrm{P}_{\mathrm{L}}=130 \mathrm{~W}$;
$\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C} ; \mathrm{Z}_{\mathrm{L}}=2,5 \Omega$.

Fig. 12 Input impedance (series components) as a function of frequency.

Figs 11 and 12 are typical curves and hold for an unneutralized amplifier in s.s.b. class-AB operation.

$\mathrm{V}_{C E}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}(\mathrm{ZS})}=100 \mathrm{~mA} ; \mathrm{P}_{\mathrm{L}}=130 \mathrm{~W} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$;
$\mathrm{Z}_{\mathrm{L}}=2,5 \Omega$; neutralizing capacitor: 150 pF .

Fig. 13 Power gain as a function of frequency.

$V_{C E}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}(\mathrm{ZS})}=100 \mathrm{~mA} ; \mathrm{P}_{\mathrm{L}}=130 \mathrm{~W} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$;
$Z_{L}=2,5 \Omega$; neutralizing capacitor: 150 pF .

Fig. 14 Input impedance (series components) as a function of frequency.

13 and 14 are typical curves and hold for a push-pull amplifier with cross-neutralization in s.s.b class-AB operation.

The graph shows the permissible output power under nominal conditions (VSWR = 1) as a function of the expected VSWR during short-time mismatch conditions with heatsink temperatures as parameter.

Fig. 15 R.F. SOAR; s.s.b. class-AB operation; $\mathrm{f}_{1}=28,000 \mathrm{MHz} ; \mathrm{f}_{2}=28,001 \mathrm{MHz}$; $\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V} ; \mathrm{R}_{\text {th }}$ mb-h $=0,2 \mathrm{~K} / \mathrm{W}$.
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit); $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$

$f(\mathrm{MHz})$	$\mathrm{V}_{\mathrm{CE}}(\mathrm{V})$	$\mathbf{P}_{\mathrm{L}}(\mathrm{W})$	$\mathbf{P}_{\mathrm{S}}(\mathrm{W})$	$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\eta(\%)$	$\bar{z}_{\mathrm{i}}(\Omega)$	$\overline{\mathbf{Y}}_{\mathrm{L}}(\mathrm{mS})$
87,5	28	130	typ. 23,2	typ. 7,5	typ. 6,2	typ. 75	$\mathbf{0 , 6 2 + j 0 , 7 3}$	$\mathbf{2 7 3 - j 4 2}$

Fig. 16 Test circuit; c.w. class-B.

List of components:
C1 $=4$ to 40 pF film dielectric trimmer (cat. no. 2222809 07008)
$\mathrm{C} 2=\mathrm{C} 9=\mathrm{C} 10=7$ to 100 pF film dielectric trimmer (cat. no. 2222809 07015)
$\mathrm{C} 3=\mathrm{C} 8=22 \mathrm{pF}$ ceramic capacitor (500 V)
$\mathrm{C} 4=4 \times 82 \mathrm{pF}$ ceramic capacitors in parallel (500 V)
C5 $=390 \mathrm{pF}$ polystyrene capacitor
C6 = 220 nF polyester capacitor
C7a $=2 \times 10 \mathrm{pF}$ ceramic capacitors in parallel (500 V)
C7b $=2 \times 8,2 \mathrm{pF}$ ceramic capacitors in parallel (500 V)
L1 $=25 \mathrm{nH}$; 2 turns Cu wire ($1,6 \mathrm{~mm}$); int. dia. $5,0 \mathrm{~mm}$; length $4,6 \mathrm{~mm}$; leads $2 \times 5 \mathrm{~mm}$
$\mathrm{L} 2=\mathrm{L} 5=2,4 \mathrm{nH}$; strip ($12 \mathrm{~mm} \times 6 \mathrm{~mm}$); tap for L 4 and L 6 at 5 mm from transistor
L3 = L7 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
$\mathrm{L} 4=100 \mathrm{nH} ; 7$ turns closely wound enamelled Cu wire ($0,5 \mathrm{~mm}$); int. dia. 3 mm ; leads $2 \times 5 \mathrm{~mm}$
L6 $=46 \mathrm{nH}$; 2 turns Cu wire ($2,0 \mathrm{~mm}$); int. dia. $9,0 \mathrm{~mm}$; length $6,0 \mathrm{~mm}$; leads $2 \times 5 \mathrm{~mm}$
L8 $=44 \mathrm{nH}$; 2 turns Cu wire ($2,0 \mathrm{~mm}$); int. dia. $9,0 \mathrm{~mm}$; length $6,7 \mathrm{~mm}$; leads $2 \times 5 \mathrm{~mm}$ L2 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric.
R1 $=10 \Omega(\pm 10 \%)$ carbon resistor
R2 $=10 \Omega(\pm 10 \%)$ carbon resistor

Component layout and printed-circuit board for $87,5 \mathrm{MHz}$ test circuit are shown in Fig.17.

Fig. 17 Component layout and printed-circuit board for $87,5 \mathrm{MHz}$ test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

Fig. $18 \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V} ; \mathrm{f}=87,5 \mathrm{MHz} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$.

Fig. $19 \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V} ; \mathrm{f}=87,5 \mathrm{MHz} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; typical values.

The graph shows the permissible output power under nominal conditions (VSWR $=1$) as a function of the expected VSWR during short-time mismatch conditions with heatsink temperatures as parameter.

Fig. 20 R.F. SOAR; c.w. class-B operation;
$\mathrm{f}=87,5 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}$;
$\mathrm{R}_{\mathrm{th} \text { mb-h }}=0,2 \mathrm{~K} / \mathrm{W}$.

Fig. $21 \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V} ; \mathrm{P}_{\mathrm{L}}=130 \mathrm{~W} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; typical values.

Fig. $22 V_{C E}=28 \mathrm{~V} ; \mathrm{P}_{\mathrm{L}}=130 \mathrm{~W} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; typical values.

Fig. $23 \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V} ; \mathrm{P}_{\mathrm{L}}=130 \mathrm{~W} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$.

PACKAGE OUTLINE

Flanged ceramic package; 2 mounting holes; 4 leads

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	A	b	c	D	D_{1}	F	H	L	p	Q	9	U_{1}	$\mathbf{U}_{\mathbf{2}}$	U_{3}	w_{1}	w_{2}	α
mm	$\begin{aligned} & 7.27 \\ & 6.17 \end{aligned}$	$\begin{aligned} & 5.82 \\ & 5.56 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 12.86 \\ & 12.59 \end{aligned}$	$\begin{aligned} & 12.83 \\ & 12.57 \end{aligned}$	$\begin{aligned} & 2.67 \\ & 2.41 \end{aligned}$	$\begin{aligned} & 28.45 \\ & 25.52 \end{aligned}$	$\begin{aligned} & 7.93 \\ & 6.32 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 4.45 \\ & 3.91 \end{aligned}$	18.42	$\begin{aligned} & 24.90 \\ & 24.63 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.22 \end{aligned}$	$\begin{aligned} & 12.32 \\ & 12.06 \end{aligned}$	0.51	1.02	45°
inches	$\begin{aligned} & 0.286 \\ & 0.243 \end{aligned}$	0.229 0.219	0.006 0.004	0.506 0.496	0.505 0.495	0.105 0.095	1.120 1.005	0.312 0.249	0.130 0.120	$\begin{aligned} & 0.175 \\ & 0.154 \end{aligned}$	0.725	$\begin{aligned} & 0.98 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 0.255 \\ & 0.245 \end{aligned}$	$\begin{aligned} & 0.485 \\ & 0.475 \end{aligned}$	0.02	0.04	

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT121B				¢ +	97-06-28

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	

Application information
Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

