查询ADG794供应商

ANALOG Low Voltage, 300 MHz Quad 2:1 Mux Analog DEVICES HDTV Audio/Video Switch

ADG794

FEATURES FUNCTIONAL BLOCK DIAGRAM Bandwidth: 300 MHz ADG794 Low insertion loss and on resistance: 5 Ω typical S1A O -0 D1 On resistance flatness: 0.68 Ω typical S1B O Single 3 V/5 V supply operation S2A O D2 Low quiescent supply current: 1 nA typical S2B O Fast switching times: S3A O O D3 ton, 7 ns S3B O toff, 5 ns S4A () **TTL/CMOS** compatible S4B O 1 OF 2 DECODER **APPLICATIONS RGB** switches 5150-00' EN IN HDTV DVD-R Figure 1.

GENERAL DESCRIPTION

Audio/video switches

The ADG794 is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet gives high switching speed and low on resistance. The on resistance variation is typically less than 1.2 Ω over the input signal range.

The bandwidth of the ADG794 is typically 300 MHz and this, coupled with low distortion (typically 0.68%), makes the part suitable for switching analog audio/video signals.

The ADG794 operates from a single 3.3 V/5 V supply and is TTL logic compatible. The switches are controlled by the logic inputs IN and EN as shown in Table 4. The EN pin allows the user to disable all switches.

These switches conduct equally well in both directions when on. In the off condition, signal levels up to the supplies are blocked. The ADG794 switches exhibit break-before-make switching action.

The ADG794 is available in a 16-pin QSOP package.

PRODUCT HIGHLIGHTS

- 1. Wide bandwidth: 300 MHz.
- 2. Ultralow power dissipation.
- Crosstalk is typically -70 dB at 10 MHz. 3.
- 4. Off isolation is typically –65 dB at 10 MHz. WWW.DZSC.COM

Rev=0 PDF

Information furnished by Analog Devices is believed to be accurate and reliable. owerer, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Il sights so

TABLE OF CONTENTS

Specifications	
Single Supply 3	
Absolute Maximum Ratings5	
ESD Caution	
Pin Configuration and Function Descriptions	
Terminology7	

3	Typical Performance Characteristics8
3	Typical Application8
5	Test Circuits9
5	Outline Dimensions11
6	Ordering Guide11

REVISION HISTORY

10/04—Revision 0: Initial Version

SPECIFICATIONS

SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, GND = 0 V. All specifications T_{MIN} to T_{MAX} unless otherwise noted.

Table 1.

	B Version ¹				
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 to 2.5	V		
On Resistance (Ron)	5		Ωtyp	$V_D = 0 V$ to 1 V; $I_S = -10 mA$; Figure 6	
	7	8	Ωmax		
On Resistance Match between Channels (ΔR _{ON})	0.4		Ωtyp	$V_D = 0 V$ to 1 V; $I_S = -10 mA$	
		1.2	Ωmax		
On Resistance Flatness (R _{FLAT(ON)})	0.7		Ωtyp	$V_D = 0 V$ to 1 V; $I_S = -10 mA$	
		1.35	Ωmax		
LEAKAGE CURRENTS					
Source Off Leakage, Is (Off)	±0.001		nA typ	$V_{s} = 3 V/1 V; V_{D} = 1 V/3 V;$ Figure 7	
Drain Off Leakage, I _D (Off)	±0.001		nA typ	$V_{s} = 3 V/1 V; V_{D} = 1 V/3 V;$ Figure 7	
Channel On Leakage, I _D , Is (On)	±0.001		nA typ	$V_{D} = V_{S} = 3 V/1 V$; Figure 8	
DIGITAL INPUTS					
Input High Voltage, VINH		2.4	V min		
Input Low Voltage, VINL		0.8	V max		
Input Current					
IINL OR IINH	0.001		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$	
		±0.1	µA max		
Digital Input Capacitance, C _{IN}		3	pF typ		
DYNAMIC CHARACTERISTICS ²			1		
ton, ton (EN)	7		ns typ	$C_L = 35 \text{ pF}; R_L = 50 \Omega$	
		14	ns max	$V_s = 2 V$; Figure 9	
t _{off} , t _{off} (EN)	5		ns typ	$C_L = 35 \text{ pF}; R_L = 50 \Omega$	
Corr/ Corr ()		8	ns max	$V_s = 2 V$; Figure 9	
Break-Before-Make Time Delay, t _D	3	5	ns typ	$C_L = 35 \text{ pF}; R_L = 50 \Omega$	
		1	ns min	$V_{s1} = V_{s2} = 2 V$; Figure 10	
Off Isolation	-65	·	dB typ	$f = 10 \text{ MHz}; R_{L} = 50 \Omega;$ Figure 12	
Channel-to-Channel Crosstalk	-70		dB typ	$f = 10 \text{ MHz}; R_L = 50 \Omega;$ Figure 13	
Bandwidth –3 dB	300		MHz typ	$R_L = 50 \Omega$; Figure 11	
Distortion	0.7		% typ	$R_{\rm L} = 100 \Omega$	
Charge Injection	6		pC typ	$C_L = 1 \text{ nF}; V_S = 0 \text{ V}; Figure 14$	
C _s (Off)	6		pC typ pF typ		
$C_{\rm D}$ (Off)	7.5		pF typ		
$C_{\rm D}, C_{\rm S}$ (On)	13.5		pF typ		
POWER REQUIREMENTS	13.5		P' 9P	$V_{DD} = 5.5 \text{ V}; \text{ digital inputs} = 0 \text{ V or } V_{DD}$	
	0.001		μA typ		
40	0.001	1	μΑ τyp μΑ max		
		I	μπιπαλ		

 1 Temperature range for B Version is $-40^\circ C$ to $+85^\circ C.$ 2 Guaranteed by design, not subject to production test.

 V_{DD} = 3 V \pm 10%, GND = 0 V. All specifications T_{MIN} to $T_{\text{MAX}},$ unless otherwise noted.

Table 2.

	B Version ¹				
Parameter	25°C	T_{MIN} to T_{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 to 1.5	V		
On Resistance (R _{ON})	7		Ωtyp	$V_D = 0$ V to 1 V; Is = -10 mA; Figure 6	
	9.5	11	Ωmax		
On Resistance Match between Channels (ΔR_{ON})	0.3		Ωtyp	$V_D = 0 V$ to 1 V; $I_s = -10 mA$	
		0.9	Ωmax		
On Resistance Flatness (R _{FLAT(ON)})	2.6		Ωtyp	$V_D = 0 V$ to 1 V; $I_S = -10 mA$	
		5	Ωmax		
LEAKAGE CURRENTS					
Source Off Leakage, Is (Off)	±0.001		nA typ	$V_{s} = 2 V/1 V$; $V_{D} = 1 V/2 V$; Figure 7	
Drain Off Leakage, I _D (Off)	±0.001		nA typ	$V_{s} = 2 V/1 V$; $V_{D} = 1 V/2 V$; Figure 7	
Channel On Leakage, I _D , I _S (On)	±0.001		nA typ	$V_D = V_S = 2 V/1 V$; Figure 8	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, VINL		0.4	V max		
Input Current					
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$	
		±0.1	µA max		
Digital Input Capacitance, C _{IN}		3	pF typ		
DYNAMIC CHARACTERISTICS ²					
t _{on} , t _{on} (EN)	8		ns typ	$C_L = 35 \text{ pF}; R_L = 50 \Omega$	
		16	ns max	V _s = 1.5 V; Figure 9	
toff, toff (EN)	6		ns typ	$C_L = 35 \text{ pF}; R_L = 50 \Omega$	
		10	ns max	Vs = 1.5 V; Figure 9	
Break-Before-Make Time Delay, t₀	3		ns typ	$C_{L} = 35 \text{ pF; } R_{L} = 50 \Omega$	
		1	ns min	$V_{s1} = V_{s2} = 1.5 V$; Figure 10	
Off Isolation	-65		dB typ	$f = 10 \text{ MHz}$; $R_L = 50 \Omega$; Figure 12	
Channel-to-Channel Crosstalk	-70		dB typ	$f = 10 \text{ MHz}; R_L = 50 \Omega;$ Figure 13	
Bandwidth –3 dB	300		MHz typ	$R_L = 50 \Omega$; Figure 11	
Distortion	2.6		% typ	$R_L = 100 \Omega$	
Charge Injection	4		pC typ	$C_L = 1 \text{ nF}; V_S = 0 \text{ V}; Figure 14$	
Cs (Off)	6		pF typ		
C _D (Off)	7.5		pF typ		
C _D , C _s (On)	13.5		pF typ		
POWER REQUIREMENTS				$V_{DD} = 3.3$ V; digital inputs = 0 V or V_{DD}	
lod	0.001		μA typ		
		1	µA max		

 1 Temperature range for B Version is -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameters	Ratings
V _{DD} to GND	–0.3 V to +6 V
Analog, Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or
	30 mA, whichever occurs
	first
Continuous Current, S or D	100 mA
Peak Current, S or D	300 mA (pulsed at 1 ms,
	10% duty cycle max)
Operating Temperature Range	
Industrial (B Version)	–40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
QSOP Package, Power Dissipation	566 mW
θ_{JA} Thermal Impedance	149.97°C/W
Lead Temperature, Soldering	
Vapor Phase (60 s)	215°C
Infrared (15 s)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 4. Truth Table

EN	IN	D1	D2	D3	D4	Function
1	Х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Disable
0	0	S1A	S2A	S3A	S4A	IN = 0
0	1	S1B	S2B	S3B	S4B	IN = 1

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

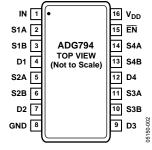


Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin Number	Mnemonic	Description
1	IN	Logic Control Input. The logic level at this input controls the operation of the multiplexers (see Table 4).
2	S1A	A-Side Source Terminal of MUX1. Can be an input or output.
3	S1B	B-Side Source Terminal of MUX1. Can be an input or output.
4	D1	Drain Terminal of MUX1. Can be an input or output.
5	S2A	A-Side Source Terminal of MUX2. Can be an input or output.
6	S2B	B-Side Source Terminal of MUX2. Can be an input or output.
7	D2	Drain Terminal of MUX2. Can be an input or output.
8	GND	Ground Reference.
9	D3	Drain Terminal of MUX3. Can be an input or output.
10	S3B	B-Side Source Terminal of MUX3. Can be an input or output.
11	S3A	A-Side Source Terminal of MUX3. Can be an input or output.
12	D4	Drain Terminal of MUX4. Can be an input or output.
13	S4B	B-Side Source Terminal of MUX4. Can be an input or output.
14	S4A	A-Side Source Terminal of MUX4. Can be an input or output.
15	EN	MUX Enable Logic Input. Enables or disables the multiplexers (see Table 4).
16	V _{DD}	Positive Power Supply Voltage.

TERMINOLOGY

 \mathbf{V}_{DD} Most positive power supply potential.

I_{DD} Positive supply current.

GND Ground (0 V) reference.

S Source terminal. Can be either an input or an output.

D Drain terminal. Can be either an input or an output.

IN Logic control input.

V_D (V_s) Analog voltage on terminals D, S.

R_{ON} Ohmic resistance between D and S.

 $R_{\text{FLAT (ON)}}$ Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

 $\Delta R_{\rm ON}$ On resistance match between any two channels.

Is (Off) Source leakage current with the switch off.

I_D (Off) Drain leakage current with the switch off.

I_D, I_S (On) Channel leakage current with the switch on.

 \mathbf{V}_{INL} Maximum input voltage for Logic 0.

 $V_{\rm INH}$ Minimum input voltage for Logic 1.

I_{INL} (I_{INH}) Input current of the digital input. C_s (Off) Off switch source capacitance. Measured with reference to ground.

 C_D (Off) Off switch drain capacitance. Measured with reference to ground.

C_D, C_S (On) On switch capacitance. Measured with reference to ground.

C_{IN} Digital input capacitance.

 t_{ON} Delay time between the 50% and the 90% points of the digital input and switch on condition.

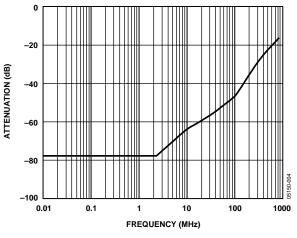
t_{OFF} Delay time between the 50% and the 90% points of the digital input and switch off condition.

t_{BBM} On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

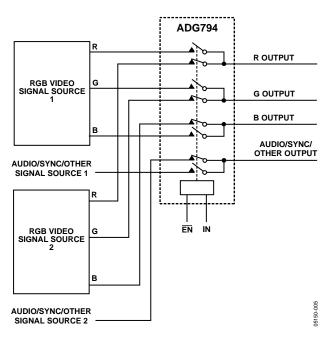
Off Isolation A measure of unwanted signal coupling through an off switch.

Crosstalk A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

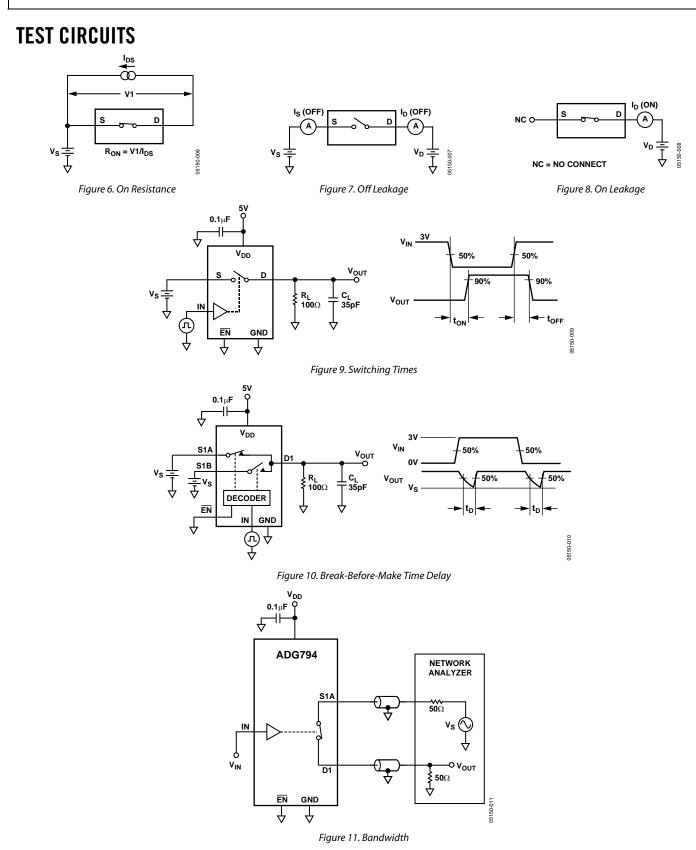

-3 dB Bandwidth The frequency at which the output is attenuated by 3 dB.

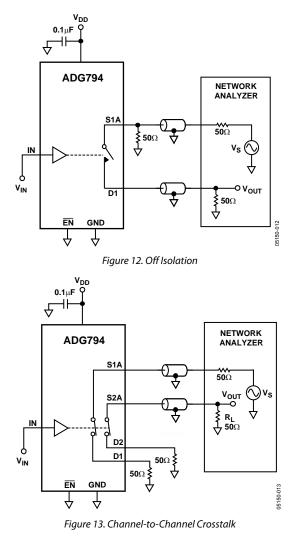
On Response The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.


THD + N The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS 0 -20 ATTENUATION (dB) -40 -60 -80 51 -100 L 0.01 0.1 10 100 1000 1 FREQUENCY (MHz) Figure 3. Off Isolation vs. Frequency





TYPICAL APPLICATION

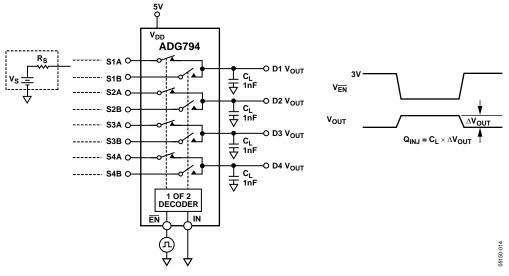
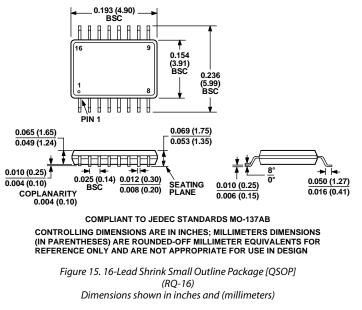



Figure 14. Charge Injection

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG794BRQZ ¹	-40°C to +85°C	16-Lead Shrink Small Outline Package (QSOP)	RQ-16
ADG794BRQZ-500RL71	−40°C to +85°C	16-Lead Shrink Small Outline Package (QSOP)	RQ-16
ADG794BRQZ-REEL ¹	−40°C to +85°C	16-Lead Shrink Small Outline Package (QSOP)	RQ-16
ADG794BRQZ-REEL71	-40°C to +85°C	16-Lead Shrink Small Outline Package (QSOP)	RQ-16

 1 Z = Pb-free part.

NOTES

© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05150-0-10/04(0)

www.analog.com