
BS870

DMOS Transistors (N-Channel)

SOT-23

Dimensions in inches and (millimeters)

Pin configuration WWW.DZSC.COM 1 = Gate, 2 = Source, 3 = Drain

FEATURES

- High input impedance
- High-speed switching
- No minority carrier storage time
- CMOS logic compatible input
- No thermal runaway
- No secondary breakdown

MECHANICAL DATA

Case: SOT-23 Plastic Package

Weight: approx. 0.008 g

Marking S70

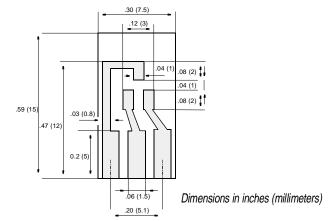
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Value	Unit	
Drain-Source Voltage	V _{DSS}	60		
Drain-Gate Voltage	V _{DGS}	60	V	
Gate-Source Voltage (pulsed)	V _{GS}	± 20	V	
Drain Current (continuous)	I _D	250	mA	
Power Dissipation at T _{SB} = 50 °C	P _{tot}	0.3101)	W	
Junction Temperature	T _j	150	°C	
Storage Temperature Range	T _S	-65 to +150	°C	
Device on fiberglass substrate, see layout	C III			

Inverse Diode

	Symbol	Value	Unit
Max. Forward Current (continuous) at T _{amb} = 25 °C	I _F	0.3	А
Forward Voltage Drop (typ.) at Vos = 0, i= = 0.3 A, T _j = 25 °C	V _F	0.85	V

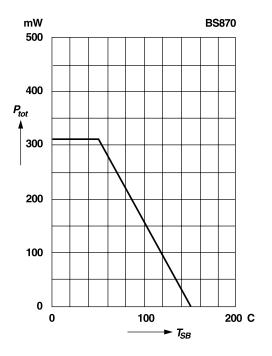

df.dzsc.com

BS870

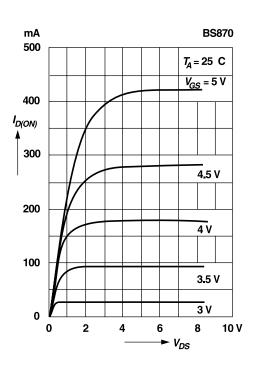
ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

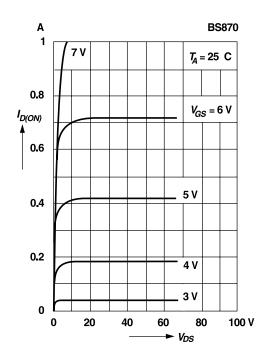
	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at $I_D = 100 \mu A$, $V_{GS} = 0$	V _{(BR)DSS}	60	80	_	V
Gate Threshold Voltage at $V_{GS} = V_{DS}$, $I_D = 1$ mA	V _{GS(th)}	1.0	2	3.0	V
Gate-Body Leakage Current at V _{GS} = 15 V, V _{DS} = 0	I _{GSS}	_	-	10	nA
Drain Cutoff Current at $V_{DS} = 25 \text{ V}$, $V_{GS} = 0$	I _{DSS}	-	_	0.5	μΑ
Drain-Source ON Resistance at V _{GS} = 10 V, I _D = 200 mA	R _{DS(ON)}	_	3.5	5.0	Ω
Thermal Resistance Junction to Substrate Backside	R _{thSB}	_	_	3201)	K/W
Thermal Resistance Junction to Ambient Air	R _{thJA}	_	_	450 ¹⁾	K/W
Forward Transconductance at V _{DS} = 10 V, I _D = 200 mA, f = 1 MHz	9m	-	200	-	mS
Input Capacitance at $V_{DS} = 10 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$	C _{iss}	_	30	_	pF
Switching Times at V_{GS} = 10 V, V_{DS} = 10 V, R_D = 100 Ω Turn-On Time Turn-Off Time	t _{on}		5 25		ns ns


Layout for R_{thJA} test Thickness: Fiberglass 0.059 in (1.5 mm) Copper leads 0.012 in (0.3 mm)

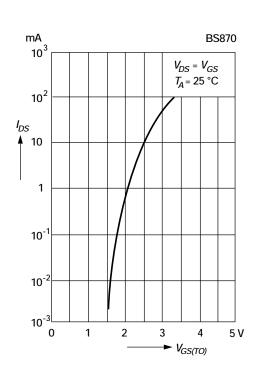
RATINGS AND CHARACTERISTIC CURVES BS870


Admissible power dissipation versus temperature of substrate backside

Device on fiberglass substrate, see layout


Saturation characteristics

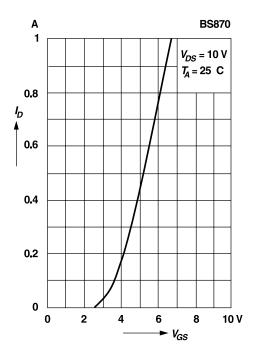
Pulse test width 80 ms; pulse duty factor 1%

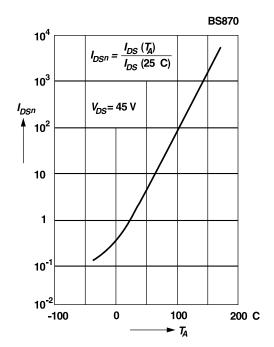


Output characteristics

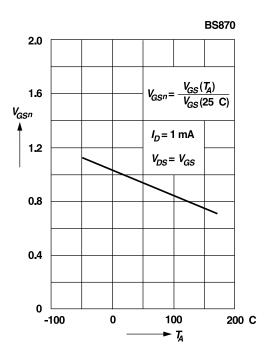
Pulse test width 80 ms; pulse duty factor 1%

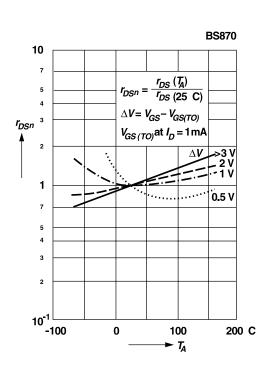
Drain-source current versus gate threshold voltage



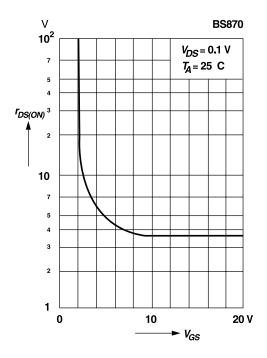

RATINGS AND CHARACTERISTIC CURVES BS870

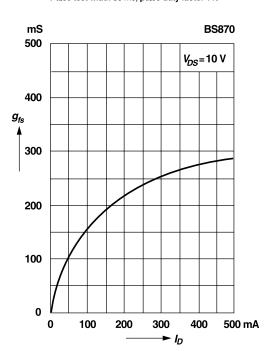
Drain current versus gate-source voltage


Pulse test width 80 ms; pulse duty factor 1%

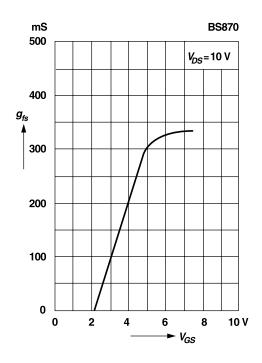

Normalized drain-source current versus temperature

Normalized gate-source voltage versus temperature

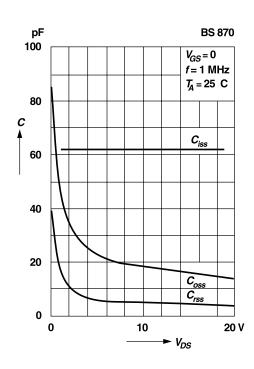

Normalized drain-source resistance versus temperature


RATINGS AND CHARACTERISTIC CURVES BS870

Drain-source resistance versus gate-source voltage


Transconductance versus drain current

Pulse test width 80 ms; pulse duty factor 1%



Transconductance versus drain current

Pulse test width 80 ms; pulse duty factor 1%

Capacitance versus drain-source voltage

