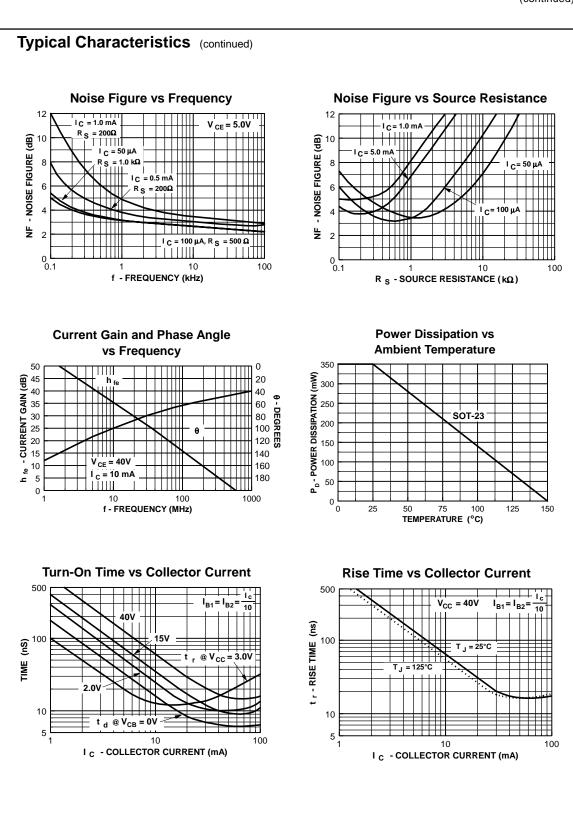

e199 Fairchild Semiconductor Corporation

OFF CHA V(BR)CEO		Test Conditions	Min	Max	Units
	RACTERISTICS Collector-Emitter Breakdown	I _C = 10 μA, I _B = 0	60		V
(BR)CEO	Voltage		00		
(BR)CBO	Collector-Base Breakdown Voltage	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm E} = 0$	40		V
(BR)EBO	Emitter-Base Breakdown Voltage	$I_E = 10 \ \mu A, \ I_C = 0$	6.0		V
СВО	Collector-Cutoff Current	$V_{CB} = 30 \text{ V}, T_{A} = 150^{\circ}\text{C}$		5.0	μΑ
CEX	Collector-Cutoff Current	$V_{CE} = 30 \text{ V}, \text{ V}_{EB} = 3.0 \text{ V}$		50	nA
BEX	Reverse Base Current	$V_{CE} = 30 \text{ V}, \text{ V}_{EB} = 3.0 \text{ V}$		50	nA
	RACTERISTICS				
	DC Current Gain	I _C = 0.1 mA, V _{CE} = 1.0 V	40		
FE		$I_{c} = 1.0 \text{ mA}, V_{cE} = 1.0 \text{ V}$	70		
		$I_{\rm C} = 10$ mA, $V_{\rm CE} = 1.0$ V	100	300	
		$I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$	60 30		
CE(sat)	Collector-Emitter Saturation Voltage*	$I_{\rm C} = 10 \text{ mA}, V_{\rm CE} = 1.0 \text{ mA}$	30	0.2	V
CE(Sal)	g-	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$		0.3	V
(BE(sat)	Base-Emitter Saturation Voltage*	$I_{\rm C} = 10$ mA, $I_{\rm B} = 1.0$ mA $I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA	0.65	0.85 0.95	V V
SMALL S	IGNAL CHARACTERISTICS				
	IGNAL CHARACTERISTICS	$I_{c} = 20 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	300		MHz
Г			300	4.0	MHz pF
cb	Transition Frequency	f = 100 MHz	300	4.0	_
r Ccb Ceb	Transition Frequency Collector-Base Capacitance	$ f = 100 \text{ MHz} \\ V_{CB} = 5.0 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1.0 \text{ MHz} $	300		pF
T Cob Ceb Nie	Transition Frequency Collector-Base Capacitance Emitter-Base Capacitance	$\label{eq:cb} \begin{array}{l} f = 100 \text{ MHz} \\ \\ V_{CB} = 5.0 \text{ V}, \text{ I}_{\text{E}} = 0, \text{ f} = 1.0 \text{ MHz} \\ \\ \\ V_{EB} = 0.5 \text{ V}, \text{ I}_{\text{C}} = 0, \text{ f} = 1.0 \text{ MHz} \end{array}$		8.0	pF pF
T C _{cb} C _{eb} Die	Transition Frequency Collector-Base Capacitance Emitter-Base Capacitance Input Impedance	$\label{eq:constraint} \begin{array}{l} f = 100 \text{ MHz} \\ V_{CB} = 5.0 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1.0 \text{ MHz} \\ V_{EB} = 0.5 \text{ V}, \text{ I}_{C} = 0, \text{ f} = 1.0 \text{ MHz} \\ V_{CE} = 10 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}, \text{f} = 1.0 \text{ kHz} \end{array}$	1.0	8.0 10	pF
T Ceb Deb Die Die Die	Transition Frequency Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Small-Signal Current Gain Output Admittance	$\begin{array}{l} f = 100 \text{ MHz} \\ \hline V_{CB} = 5.0 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1.0 \text{ MHz} \\ \hline V_{EB} = 0.5 \text{ V}, \text{ I}_{C} = 0, \text{ f} = 1.0 \text{ MHz} \\ \hline V_{CE} = 10 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}, \text{f} = 1.0 \text{ kHz} \\ \hline V_{CE} = 10 \text{ V}, \text{I}_{C} = 1.0 \text{ mA}, \text{f} = 1.0 \text{ kHz} \end{array}$	1.0 100	8.0 10 400	pF pF kΩ
T Cob Ceb Nie Nie Noe	Transition Frequency Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Small-Signal Current Gain		1.0 100	8.0 10 400	pF pF kΩ
T Ceb Die Die Die Switchi	Transition Frequency Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Small-Signal Current Gain Output Admittance NG CHARACTERISTICS	$ f = 100 \text{ MHz} \\ V_{CB} = 5.0 \text{ V}, I_E = 0, f = 1.0 \text{ MHz} \\ V_{EB} = 0.5 \text{ V}, I_C = 0, f = 1.0 \text{ MHz} \\ V_{CE} = 10 \text{ V}, I_C = 1.0 \text{ mA}, f = 1.0 \text{ kHz} \\ V_{CE} = 10 \text{ V}, I_C = 1.0 \text{ mA}, f = 1.0 \text{ kHz} \\ V_{CE} = 10 \text{ V}, I_C = 1.0 \text{ mA}, f = 1.0 \text{ kHz} \\ \end{array} $	1.0 100	8.0 10 400 40	pF pF kΩ μS
T Ceb Die Die Die Switchi	Transition Frequency Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Small-Signal Current Gain Output Admittance NG CHARACTERISTICS Delay Time		1.0 100	8.0 10 400 40 35	pF pF kΩ μS

NPN (Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 Ise=6.734 Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 Tr=239.5n Tf=301.2p Itf=.4 Vtf=4 Xtf=2 Rb=10)


NPN General Purpose Amplifier

ed)

NPN General Purpose Amplifier

(continued)

NPN General Purpose Amplifier (continued) Typical Characteristics (continued) Storage Time vs Collector Current Fall Time vs Collector Current 500 500 I_{B2}= **B**1 B2 B t s- STORAGE TIME (ns) T j = 25°C Vcc = 40V t _f - FALL TIME (ns) $\left\{\cdot\right\}$ 100 T_J = 125°C 10 10 5 5 10 I c - COLLECTOR CURRENT (mA) 100 10 1 100 1 I C - COLLECTOR CURRENT (mA) **Test Circuits** 3.0 V 0 **\$** 275 Ω ► 300 ns 10.6 V Duty Cycle = 2% 10 KΩ Ŵ < 4.0 pF - 0.5 V < 1.0 ns 🔸 FIGURE 1: Delay and Rise Time Equivalent Test Circuit 3.0 V $10 < t_1 < 500 \, \mu s$ → t, 10.9 V 275 Ω Duty Cycle = 2% 10 KΩ 0 < 4.0 pF 1N916 - 9.1 V 🗲 < 1.0 ns → FIGURE 2: Storage and Fall Time Equivalent Test Circuit

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] Bottomless [™] CoolFET [™] <i>CROSSVOLT</i> [™] DOME [™] E ² CMOS [™] EnSigna [™] FACT [™] FACT Quiet Series [™] FAST ®	FASTr [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] ISOPLANAR [™] MICROWIRE [™] OPTOLOGIC [™] OPTOPLANAR [™] PACMAN [™] POP [™]	PowerTrench [®] QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] SILENT SWITCHER [®] SMART START [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8	SyncFET™ TinyLogic™ UHC™ VCX™
---	---	--	--

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.