
MOTOROLOGICAL DATA SEMICONDUCTOR TECHNICAL DATA

捷多邦,专业PCB打样工厂,24小时加急出货 Order this document

by MMBT5550LT1/D

High Voltage Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	140	Vdc	
Collector-Base Voltage	VCBO	160	Vdc	
Emitter-Base Voltage	VEBO	6.0	Vdc	
Collector Current — Continuous	IC	600	mAdc	

MMBT5550LT1 MMBT5551LT1*

*Motorola Preferred Device

CASE 318-08, STYLE 6 SOT-23 (TO-236AB)

WWW.DZST

Min

Max

Unit

Symbol

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Total Device Dissipation FR-5 Board ⁽¹⁾ $T_A = 25^{\circ}C$	PD	225	mW	
Derate above 25°C	P CO!	1.8	mW/°C	
Thermal Resistance, Junction to Ambient	R _{0JA}	556	°C/W	
Total Device Dissipation Alumina Substrate, $(2) T_A = 25^{\circ}C$	PD	300	mW	
Derate above 25°C		2.4	mW/°C	
Thermal Resistance, Junction to Ambient	R _{θJA}	417	°C/W	
Junction and Storage Temperature	Тј, T _{stg}	-55 to +150	°C	

DEVICE MARKING

MMBT5550LT1 = M1F; MMBT5551LT1 = G1

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic

Collector – Emitter Breakdown Voltage(3) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	MMBT5550 MMBT5551	V _(BR) CEO	140 160	-130	Vdc
Collector–Base Breakdown Voltage (I _C = 100 μ Adc, I _E = 0)	MMBT5550 MMBT5551	V(BR)CBO	160 180	250.01	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	683 I F	V _(BR) EBO	6.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 120 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$ $(V_{CB} = 120 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$	MMBT5550 MMBT5551 MMBT5550 MMBT5551	ICBO	 	100 50 100 50	nAdc μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)		IEBO	_	50	nAdc

1. FR-5 = 1.0 \times 0.75 \times 0.062 in.

2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.

3. Pulse Test: Pulse Width = $300 \,\mu$ s, Duty Cycle = 2.0%.

Thermal Clad is a trademark of the Bergquist Company

Preferred devices are Motorola recommended choices for future use and best overall value.

pdf.dzsc.com

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS					
DC Current Gain		hFE			—
$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT5550 MMBT5551		60 80	_	
$(I_{C} = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT5550 MMBT5551		60 80	250 250	
$(I_{C} = 50 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT5550 MMBT5551		20 30	_	
Collector-Emitter Saturation Voltage		V _{CE(sat)}			Vdc
$(I_{C} = 10 \text{ mAdc}, I_{B} = 1.0 \text{ mAdc})$	Both Types		—	0.15	
$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	MMBT5550 MMBT5551		_ _	0.25 0.20	
Base-Emitter Saturation Voltage		V _{BE(sat)}			Vdc
$(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	Both Types	, ,	—	1.0	
$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	MMBT5550 MMBT5551			1.2 1.0	

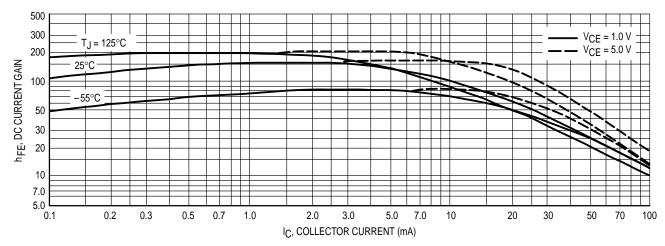
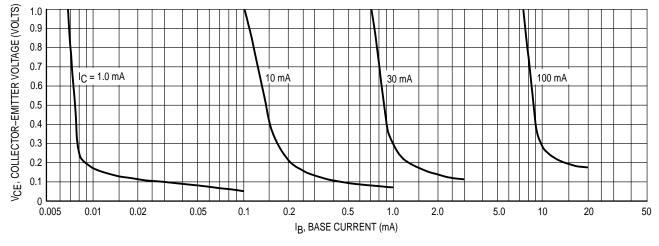



Figure 1. DC Current Gain

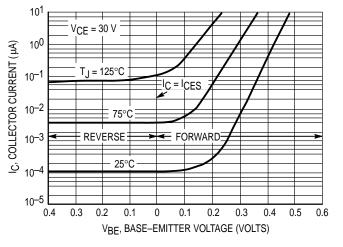


Figure 3. Collector Cut–Off Region

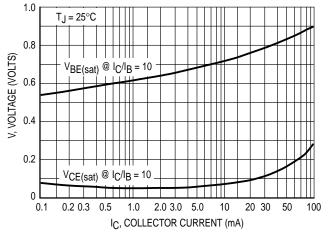
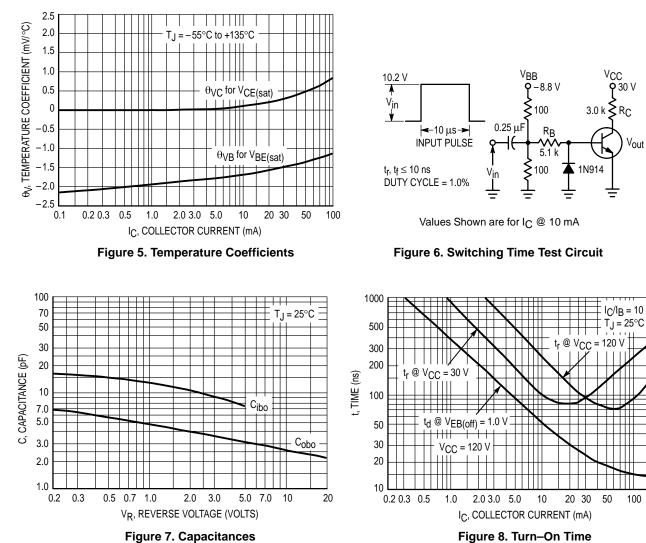
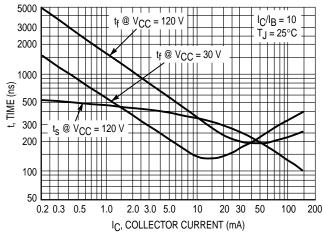
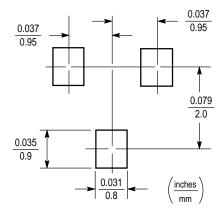




Figure 4. "On" Voltages

200


Figure 9. Turn–Off Time

INFORMATION FOR USING THE SOT-23 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection

interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

SOT-23

SOT-23 POWER DISSIPATION

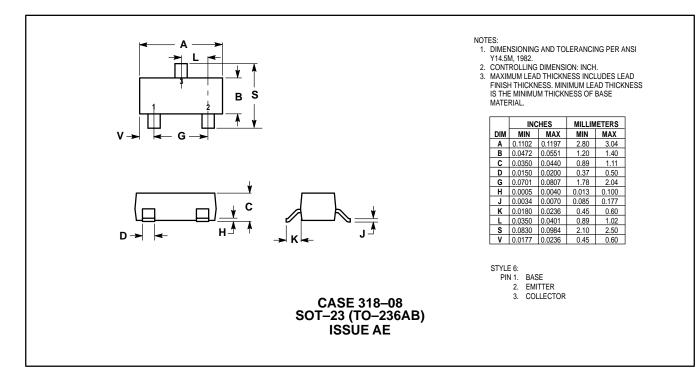
The power dissipation of the SOT–23 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_J(max)$, the maximum rated junction temperature of the die, $R_{\theta}JA$, the thermal resistance from the device junction to ambient, and the operating temperature, T_A . Using the values provided on the data sheet for the SOT–23 package, P_D can be calculated as follows:

$$P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta JA}}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device which in this case is 225 milliwatts.

$$P_{D} = \frac{150^{\circ}C - 25^{\circ}C}{556^{\circ}C/W} = 225 \text{ milliwatts}$$

The 556°C/W for the SOT–23 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 225 milliwatts. There are other alternatives to achieving higher power dissipation from the SOT–23 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad[™]. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.


SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.
- The soldering temperature and time shall not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.

* Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

PACKAGE DIMENSIONS

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

