

LOW-VOLTAGE 8:1 MULTIPLEXER/ DEMULTIPLEXER

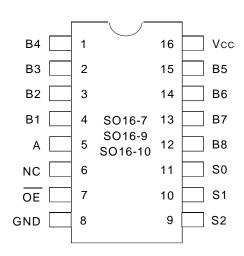
IDT74CBTLV3251

FEATURES:

- Functionally equivalent to QS3251
- 5 Ω Switch Connection between Two Ports
- Isolation Under Power-Off Conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100ma
- Vcc = 2.3V 3.6V, normal range
- ESD > 2000V per MIL-STD-883, Method 3015;
 - > 200V using machine model (C = 200pF, R = 0)
- Available in SSOP, QSOP, and TSSOP packages

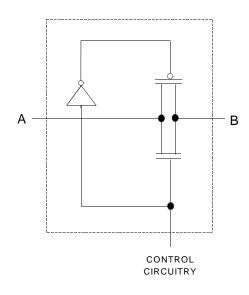
DESCRIPTION:

The CBTLV3251 is a 1-of-8 high-speed multiplexer/demultiplexer. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.


The select input (S0, S1, S2) controls the data flow. The multiplexer/demultiplexer switches are disabled when the output-enable (\overline{OE}) input is high.

To ensure that the device is in high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTIONAL BLOCK DIAGRAM



PIN CONFIGURATION

QSOP/ SSOP/ TSSOP TOP VIEW

SIMPLIFIED SCHEMATIC, EACH SWITCH

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 4.6	٧
Vı	Input Voltage Range	-0.5 to 4.6	٧
	Continuous Channel Current	128	mA
lıĸ	Input Clamp Current, VI/O < 0	-50	mA
Tstg	Storage Temperature	-65 to +150	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTION TABLE (1)

ŌE	S2	S 1	S0	Function
L	L	L	L	A Port = B1 Port
L	L	L	Н	A Port = B2 Port
L	L	Н	L	A Port = B3 Port
L	L	Н	Н	A Port = B4 Port
L	Н	L	L	A Port = B5 Port
L	Н	L	Н	A Port = B6 Port
L	Н	Н	L	A Port = B7 Port
L	Н	Н	Н	A Port = B8 Port
Н	Х	Х	Х	Disconnect

NOTE:

H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Don't Care

OPERATING CHARACTERISTICS (1)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	Vcc = 2.3V to 2.7V	1.7	_	V
		Vcc = 2.7V to 3.6V	2	_	
VIL	Low-Level Control Input Voltage	Vcc = 2.3V to 2.7V	_	0.7	V
		Vcc = 2.7V to 3.6V	_	0.8	
TA	Operating Free-Air Temperature		-40	+85	°C

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C to +85°C

Symbol	Parameter		Test Conditions		Typ. (1)	Max.	Unit
Vik	Control Inputs, Data I/O	Vcc = 3V, II = -18n	nA	_	_	- 1.2	V
lı .	Control Inputs, Data I/O	Vcc = 3.6V, VI = Vc	cc or GND	_	_	±1	μΑ
loz	Data I/O	Vcc = 3.6V, Vo = 0	or 3.6V, switch disabled	_	_	20	μΑ
loff		Vcc = 0, Vi or Vo =	0 to 3.6V	_	_	50	μΑ
Icc		Vcc = 3.6V, lo = 0,	Vcc = 3.6V, Io = 0, VI = Vcc or GND		_	10	μΑ
∆ Icc ⁽²⁾	Control Inputs	Vcc = 3.6V, One inp	Vcc = 3.6V, One input at 3V, Other inputs at Vcc or GND		_	300	μА
Сі	Control Inputs	Vı = 3V or 0	VI = 3V or 0		4	_	pF
Cio(off)	A port	Vo = 3V or 0, OE =	$V_O = 3V \text{ or } 0, \overline{OE} = V_{CC} = 3.3V$		40.5	_	pF
	B port				6	_	
	Max at Vcc = 2.3V	V _I = 0	Io = 64mA	_	5	8	
	Typ at Vcc = 2.5V		Io = 24ma	_	5	8	
Ron (3)		VI = 1.7V	Io = 15mA	_	27	40	Ω
		V _I = 0	Io = 64mA	_	5	7	
	Vcc = 3V		Io = 24mA VI = 2.4V Io = 15mA		5	7	
		VI = 2.4V			10	15	

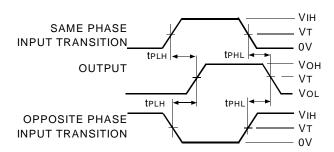
NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. The increase in supply current is attributable to each output that is at the specified voltage level rather than Vcc or GND.
- 3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

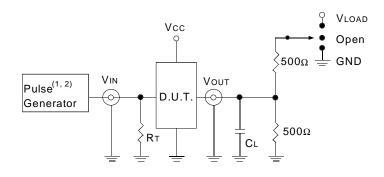
SWITCHING CHARACTERISTICS

		Vcc = 2.5V ± 0.2V		Vcc = 3.3V ± 0.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{PD} ⁽¹⁾	Propagation Delay A to B or B to A	-	0.15	_	0.25	ns
tsel	Select Time S to A or B	1	4.8	1	4.5	ns
t _{EN}	Enable Time S to B	1	4.8	1	4.5	ns
tois	Disable Time S to B	1	5.1	1	5.3	ns
ten	Enable Time OE to A or B	1	5	1	4.8	ns
tois	Disable Time OE to A or B	1	5.5	1	6	ns

NOTE:


1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

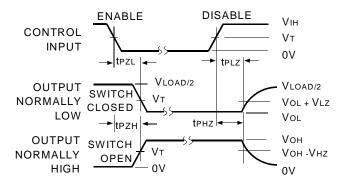
TEST CIRCUITS AND WAVEFORMS


TEST CONDITIONS

Symbol	$Vcc^{(1)}=3.3V\pm0.3V$	$Vcc^{(2)}= 2.5V \pm 0.2V$	Unit
VLOAD	6	2 x Vcc	V
ViH	3	Vcc	V
VT	1.5	Vcc/2	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

PROPAGATION DELAY/ SELECT TIME

TEST CIRCUITS FOR ALL OUTPUTS


DEFINITIONS:

- CL = Load capacitance: includes jig and load capacitance.
- RT = Termination resistance: should be equal to ZouT of the pulse generator.

NOTES:

- 1. Pulse Generator for all pulses: Rate ≤ 10MHz; tF ≤ 2.5ns, tR ≤ 2.5ns
- 2. Pulse Generator for all pulses: Rate \leq 10MHz; tF \leq 2ns, tR \leq 2ns

ENABLE AND DISABLE TIMES

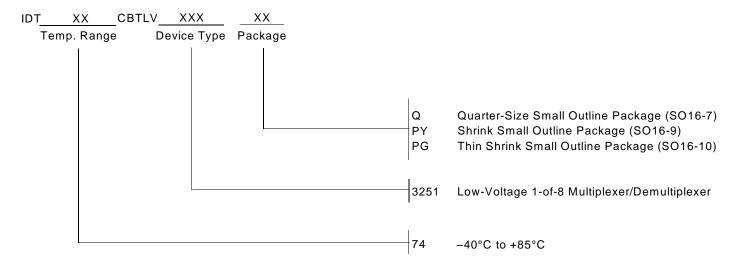

NOTE:

 Diagram shown for Input Control Enable-LOW and Input Control Disable-HIGH.

SWITCH POSITION

Test	Switch
tplz/tpzl	VLOAD
tphz/tpzh	GND
tpD	Open
tsel	Open

ORDERING INFORMATION

