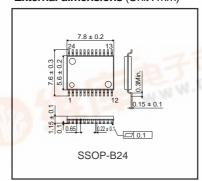
BU2285FV

Multimedia ICs

Clock generator IC **BU2285FV**

BU2285FV is an IC which produces plural clocks required for a DVD system from an external crystal oscillator and a built-in 2-channel PLL. Seven kinds of signals such as 54MHz, 27MHz and 13.5 MHz for a video clock, 33.8688MHz and 16.9342MHz for a CD clock, 33.864MHz and 18.432MHz for a DVD clock can be outputted with low jitter and high S/N.


Applications

DVD System

Features

- 1) Available with seven output clock signals
- 2) All output low jitter (No load 30ps) High S/N (More than 50dB)
- 3) No need for additional components (BU2285FV has a PLL loop filter inside) WWW.DZSC.COM
- 4) 3.3V signal power supply

External dimensions (Unit : mm)

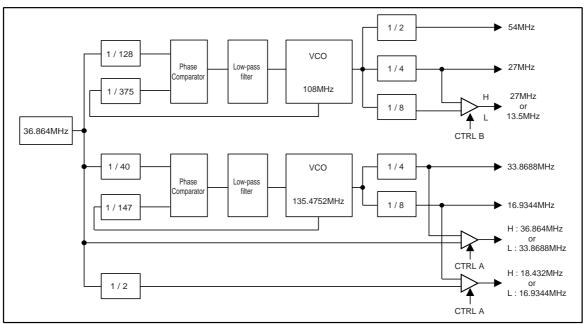
Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit
Applied voltage	Vdd	-0.5 to +7.0	V
Input voltage	Vin	-0.5 to VDD+0.5	V
Storage temperature range	Tstg	-30 to +125	°C
Power dissipation	Pd	630	mW

^{*}An operation is not guaranteed.

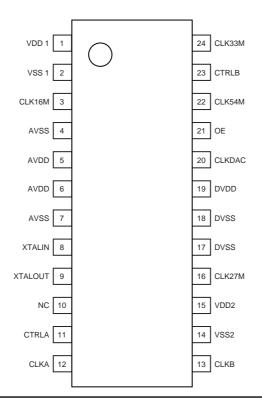
Recommended operating conditions (Ta=25°C)

Parameter	Symbol Min.		Тур.	Max.	Unit
Supply voltage	VDD	3.0	-	3.6	V
Input "H" voltage range	VIH	0.8VDD	9 -	VDD	V
Input "L" voltage range	VIL	0	1,1	0.2VDD	V
Operating temperature range	Topr	-5	l	70	°C
Output load	CL	_		15	pF

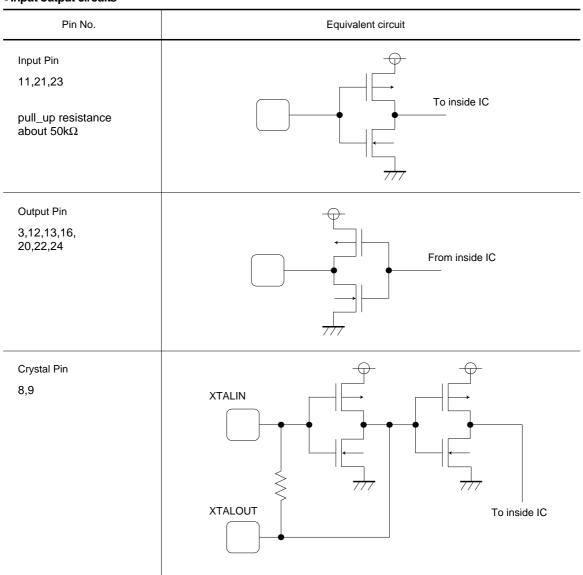


^{*} In case it is used at Ta=25°C or more, 6.3mW is reduced at every 1°C.

^{*}Radiation resistance design is not used.


^{*}Power dissipation is measured when BU2285FV is placed on the board.

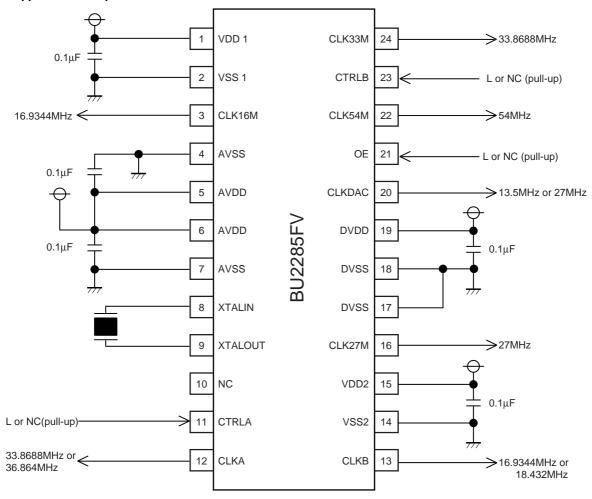
●Block diagram



●Pin descriptions

Pin No.	Pin name	Functions	
1	VDD1	Digital VDD for (33.16) MHz clock output	
2	Vss1	Digital GND for (33.16) MHz clock output	
3	CLK16M	16.934MHz clock output	
4	AVss	Analog GND	
5	AVDD	Analog VDD	
6	AVDD	Analog VDD	
7	AVss	Analog GND	
8	XTALIN	Standard crystal input	
9	ХТАLоит	Standard crystal output	
10	NC	No connection	
11	CTRLA	CLKA, CLKB select bit	
12	CLKA	CTRLA=H:36.864MHz, CTRLA=L:33.8688MHz	
13	CLKB	CTRLA=H:18.432MHz, CTRLA=L:16.9344MHz	
14	Vss2	Digital GND for (CLKA, CLKB) clock output	
15	VDD2	Digital VDD for (CLKA, CLKB) clock output	
16	CLK27M	27MHz clock output	
17	DVss	Digital GND	
18	DVss	Digital GND	
19	DVpp	Digital VDD	
20	CLKDAC	CTRLB=H:27MHz, CTRLB=L:13.5MHz	
21	OE	Output Enable (open : enable, L : disable) : with pull up	
22	CLK54M	54MHz clock output	
23	CTRLB	CLKDAC select bit	
24	CLK33M	clock output	

●Input output circuits


● Electrical characteristics (Unless specified otherwise Ta=25°C, VCC=3.3V, crystal frequency=36.864MHz)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Output "L" voltage	VOL	_	_	0.4	V	IOL=4.0mA
Output "H" voltage	VOH	2.4	_	_	V	IOH=-4.0mA
Power supply current	IDD	_	30	50	mA	No load
CLK54M	CLK54M	_	54	_	MHz	XTAL × 375 / 128 / 2
CLK27M	CLK27M	_	27	_	MHz	XTAL × 375 / 128 / 4
CLKDAC	CLKDAC_H	_	27	_	MHz	CTRLB=H, XTAL × 375 / 128 / 4
	CLKDAC_L	_	13.5	_	MHz	CTRLB=L, XTAL × 375 / 128 / 8
CLK33M	CLK33M	_	33.8688	_	MHz	XTAL × 147 / 40 / 4
CLK16M	CLK16M	_	16.9344	_	MHz	XTAL × 147 / 40 / 8
CLKA	CLKA_H	_	36.864	_	MHz	CTRLA=H, XTAL output
	CLKA_L	_	33.864	-	MHz	CTRLA=L, XTAL × 147 / 40 / 4
CLKB	CLKB_H	_	18.432	_	MHz	CTRLA=H, XTAL / 2 output
	CLKB_L	_	16.9344	_	MHz	CTRLA=L, XTAL × 147 / 40 / 8
Duty	Duty	45	50	55	%	1/2Vpd test
Jitter1	Jstd1	-	100	_	psec	Short term itter 1sigma
Jitter2	Jstd2	_	400	_	psec	Min Max. level
Rise time	tr	_	2.5	_	nsec	Time between 0.2Vpp to 0.8Vpp
Fall time	tf	-	2.5	_	nsec	Time between 0.2VDD to 0.8VDD
Output LOCK time	tLOCK	_	_	1	msec	*

Jitter is meen value when using Time Interval Analyzer with 10,000 sampling.

* Time between voltage supply lead to 3.0V and output clock gets stable. Start up time of power supply sources satisfy this rated value at every time, case.

Application example

Operating notes

The BU2285FV is basically placed on the board.

Decoupling capacitance (0.1 μ F) need to be placed between Pin6 (AVDD) and Pin7 (AVSS).

Also Decoupling capacitance (0.1 μ F) need to be placed between Pin1 (VDD1) and Pin2 (VSS1), Pin4 (AVSS) and Pin5 (AVDD), Pin14 (VSS2) and Pin15 (VDD2), Pin18 (DVSS) and Pin19 (DVDD).

To obtain accurate frequency, capacitance (pF) need to be placed between Pin8 (XTALIN) and Pin7 (AGND), Pin9 (XTALOUT) and Pin7 (AGND).

Tantalum capacitance (10 to $100\mu F$), ferrite beads may need to be placed to prevent power supply drop in certain boards case.

To reduce high frequency noise, selected bypass capacitors ($\leq 1\Omega$ at problem high frequency) maybe used for power pin as close to BU2285FV as possible.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

