Audio ICs查询BU2616供应商

PLL frequency synthesizer for tuners BU2616F

BU2616F PLL frequency synthesizers work up through the FM band. Featuring low power dissipation and highly sensitive built-in RF amps, they detect intermediate frequencies.

Applications

Tuners (Mini components, radio cassette players, radio equipment, etc.)

Features

- 1) Built-in high-speed prescaler can divide 130MHzVCO.
- Low current dissipation (during operation: 6mA PLL OFF: 1mA)
- In addition to the standard FM and AM, also offers the following 7 frequencies: 25kHz, 12.5kHz, 6.25kHz, 10kHz, 9kHz, 5kHz, and 1kHz.
- 4) SD (station detector) input circuit.

- 5) Intermediate frequency detection circuit
- 6) Charge pump output control circuit
- 7) Four output ports (Nch open drain).
- 8) Serial data input (CE, CK, DA)

Parameter	Symbol	Limits	Unit	Conditions
Power supply voltage	VDD	-0.3~+7.0	V	VDD
Maximum input voltage 1	VIN1	-0.3~+7.0	V	CE, CK, DA, SD
Maxim <mark>um</mark> input voltage 2	VIN2	-0.3~Vpp+0.3	V	XIN, FMIN, AMIN, IFIN
Maximum output voltage 1	Vout1	-0.3~+10.0	V	Po, P1, P2, P3, DO
Maximum output voltage 2	Vout2	-0.3~Vdd+0.3	V	PD1, PD2, XOUT
Maximum output current	Ιουτ	0~+3.0	mA	Po, P1, P2, P3, DO
Power dissipation	Pd	450*	mW	28
Operating temperature Topr		-10~+75	Ĵ	
Storage temperature	Tstg	-55~+125	C	

•Absolute maximum ratings (Ta = 25° C)

* Reduced by 4.5mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vdd	4.0~6.0	V

Block diagram

Pin descriptions

Pin No.	Symbol	Pin name	Function	I/O
1	XOUT		For generation of standard frequency and internal clock.	OUT
2	XIN	Crystal oscillation	Connected to 7.2 MHz crystal resonator.	IN
3	CE	Chip enable	When CE is H, DA is synchronous with the rise of CK and	
4	DA	Serial data	read to the internal shift register. DA is then latched at the	IN
5	СК	Clock signal	CD terminal synchronous to the rise of CK.	
6	DO	Data out	Comes ON during IF frequency detection or SD detection.	Nch open drain
7	SD	SD input	SD signal is input. Observed by DO terminal.	
8	IFIN	IF input	Input is for IF frequency.	IIN
9	P3			
10	P0	Output nort	Controlled on the basis of input data	Nch open drain
11	P1		Controlled on the basis of input data.	
12	P2			
13	AMIN	AM input	Local input for AM	IN
14	FMIN	FM input	Local input for FM	IN
15	VDD	Power supply	Power supply, with 4.0V to 6.0V applied voltage.	_
16	PD1	Phase comparison	High level when value obtained by dividing local output is	0 atata
17	PD2	output	lower. High impedance when value is same.	3-State
18	Vss	GROUND	_	_

Electrical characteristics (unit			cu, 1a -	- 20 0,	v 00 i —	V DDZ = 3 V)	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	s
Power supply current	DD1	-	6.0	10.0	mA	FMIN=130MHz, 100mVrms	
Quiescent current	DD2	-	1.0	2.0	mA	No input,, PLL=OFF	
Input high level voltage	VIH	4.0	—	—	V	CE, CK, DA terminals	
Input low level voltage	Vi∟	-	—	1.0	V	CE, CK, DA terminals	
Input high level current 1	Інт	-	-	1.0	μA	CE, CK, DA terminals	VIN=VDD
Input high level current 2	Іін2	-	0.3	-	μA	XIN terminals	VIN=VDD
Input high level current 3	Іінз	-	6.0	—	μA	FMIN, AMIN, IFIN termina	Is VIN=VDD
Input low level current 1	liL1	-1.0	—	—	μA	CE, CK, DA terminals	VIN=VSS
Input low level current 2	lıl2	-	-0.3	-	μA	XIN terminals	VIN=Vss
Input low level current 3	IL3	-	-6.0	-	μA	FMIN, AMIN, IFIN termina	Is VIN=Vss
Output low level voltage 1	Vol1	-	0.2	0.5	V	P0, P1, P2, P3, DO	lo=1.0mA
Off level leakage current 1	OFF1	-	—	1.0	μA	P0, P1, P2, P3, DO	Vo=10V
Output low level voltage 2	Vol2	-	0.1	0.5	V	FMIN, AMIN, IFIN	lout=0.1mA
Output high level voltage	Vон	VDD-1.0	VDD-0.3	_	V	PD1, PD2	lout=-1.0mA
Output low level voltage	Vol	—	0.2	1.0	V	PD1, PD2	lout=1.0mA
Off level leakage current 2	OFF2	-	—	100	nA	PD1, PD2	Vout=VDD
Off level leakage current 3	OFF3	-100	-	_	nA	PD1, PD2	Vout=Vss
Internal feedback resistor 1	RF1	—	10	_	MΩ	XIN	
Internal feedback resistor 2	RF2	—	500	—	kΩ	FMIN, ANIN, IFIN	
Input frequency 1	FIN1	-	7.2	_	MHz	XIN, sine wave, C coupling	
Input frequency 2	FIN2	20	-	130	MHz	FMIN, sine wave, C coupli	ng VIN=50mVrms
Input frequency 3	FIN3	0.4	—	30	MHz	AMIN 1, sine wave, C coup	oling VIN=70mVrms
Input frequency 4	FIN4	0.4	—	16	MHz	IFIN, sine wave,C coupling	VIN=70mVrms
Maximum input amplitude	FINMAX	-	-	1.5	Vrms	XIN,FMIN,AMIN,IFIN,sine	wave,C coupling
Minimum pulse width	TW	-	1.0	_	μs	CK, DA	
Input rise time	TR	—	—	500	ns	CE, CK, DA	
Input fall time	TF	—	_	500	ns	CE, CK, DA	

•Electrical characteristics (unless otherwise noted, $Ta = 25^{\circ}C$, $V_{DD}1 = V_{DD}2 = 5V$)

Input data format

Explanation of the data

(1) Division data: For D_0 through D_{15} (When S = 0, use D_4 through D_{15} .)

Example: S = 0, SW = 0

When divide ratio = 1000, the actual set value is 500 since it passes through 1/2 the circuit. This translates to 1F4 (H) in HEX notation, and to (MSB) 0000 0001 1111 0100 (LSB) in binary notation. This data is used from LSB to D0 through D15.

Do	D1	D2	Dз	D4	D₅	D6	D7	Ds	D9	D10	D11	D 12	D13	D14	D15
0	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0

LSB

Example: S = 1, SW = 1

When divide ratio = 1000, the actual set value is 1000 since it does not pass through 1/2 the circuit. This translates to 3E8 (H) in HEX notation, and to (MSB) 0000 0011 1110 1000 (LSB) in binary notation. This data is used from LSB to D0 through D15.

Do	Dı	D2	Dз	D4	D₅	D6	D7	D٥	D۹	D10	D11	D12	D13	D14	D15
0	0	0 SW/ - 0	1	0	1	1	1	1	1	0	0	0	0	0	0

Example: S = 1, SW = 0

When divide ratio = 1000, D0 through D3 can be anything since it does not pass through the prescalar. This translates to 3E8 (H) in HEX notation, and to (MSB) 0001 1111 0100 (LSB) in binary notation. This data is used from LSB to D0 through D15.

Do	Dı	D2	D₃	D4	D₅	De	D7	D۶	D۹	D10	D11	D12	D13	D14	D15
х	Х	х	х	0	0	0	1	0	1	1	1	1	1	0	0

- (2) Output port control data: P₀, P₁, P₂, P₃
 1: Nch open drain output ON
 - 0: Nch open drain output OFF
- (3) R_0 , R_1 , R_2 , standard frequency data

	Data		
R₀	R1	R2	Standard frequency
0	0	0	25kHz
0	0	1	12.5kHz
0	1	0	6.25kHz
0	1	1	10kHz
1	0	0	5kHz
1	0	1	9kHz
1	1	0	1kHz
1	1	1	* PLL OFF

* FMIN = pulldown, AMIN = pulldown, PD = high impedance

0: FMIN 1: AMIN

- (5) CT: Intermediate frequency measurement opera-
 - 1: Begins measurement.
 - 0: Resets internal counter, IFIN goes to pulldown.
- (6) L0, L1: Setting of IF frequency detection amplitude

S	L0	L1	Frequency detection amplitude
0	0	0	10.70MHz±20kHz
0	0	1	10.65MHz±20kHz
0	1	0	10.75MHz±20kHz
0	1	1	*
1	0	0	450kHz±2.0kHz
1	0	1	459kHz±2.0kHz
1	1	0	450kHz±0.5kHz
1	1	1	459kHz±0.5kHz

*: Not used.

BU2616F

(7) GT: Control of frequency measurement time0: 32ms

1:64ms

(8) SW: If this bit is set to ON while AMIN is selected, swallow counter division is possible.

- Intermediate frequency detection circuit and the DO output.
- (1) Structure

- (9) PL PH: Control of charge pump output PL = 0, PH = 0 PD1, PD2 go to PLL operation. PL = 1, PH = 0 PD1, PD2 go to LO level. PL = 0, PH = 1 PD1, PD2 go to HI level. PL = 1, PH = 1 PD1, PD2 go to LO level.
- (10) TS: Test data (0) is input

(2) How the IF frequency detection circuit operates When control data CT is set to ON, the counter and the amp go into operation. When CT equals 0, the amp input pulldown counter is reset.

Explanation of the DO

(3)

- *1 When the IF counter is OFF (CT = 0), SD input appears at the DO.
- *2 When the IF counter is set to ON (CT = 1), the control system keeps it at LO level until the measurement is finished.
- *3 After the measurement is finished, it goes to HI level if it is within the range of input frequency settings, and is kept at LO level if it is beyond the range of input frequency settings. When CT = 0, it returns to the conditions described under paragraph *1.

External dimensions (Units: mm)

