急出货

PLL frequency synthesizer for tuners BU2624AF

The BU2624AF is a PLL frequency synthesizer IC designed for use in car stereos, high-fidelity audio systems, and CD radio cassettes.

Featuring low current dissipation, low superfluous radiation, two frequency measurement counter systems, and two phase comparison outputs, this chip is ideal for high-performance multi-band systems.

Applications

Car stereos, high-fidelity audio systems, radio cassettes, receivers, and other frequency generating devices

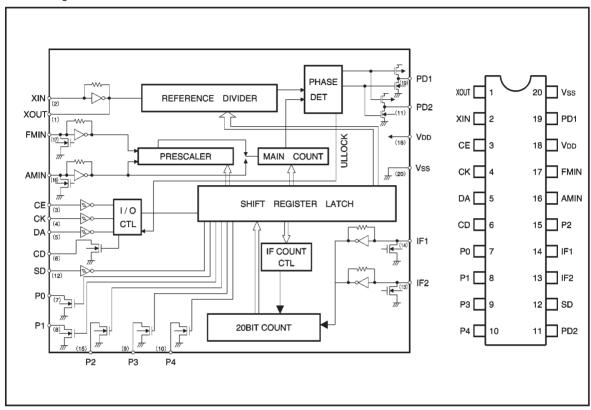
Features

- Built-in high-speed prescaler can divide 130MHzVCO.
- Low current dissipation (during operation: 6.0mA, PLL OFF: 300μA Typ.)
- Seven standard frequencies: 50kHz, 25kHz, 12.5kHz, 10kHz, 9kHz, 5kHz, and 1kHz.
- 4) Two counters for intermediate frequency detection

- 5) Unlock detection circuit
- 6) Five output ports (open drain)
- 7) SD input port
- 8) Two charge pump outputs
- 9) Serial data input (CE, CK, DA)
- 10) Control of phase comparison output

■Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit	Conditions
Power supply voltage	VDD	−0.3∼+7.0	٧	VDD
Maximum input voltage 1	VIN1	−0.3∼+7.0	٧	CE,CK,DA,SD
Maximum input voltage 2	V _{IN2}	-0.3~V _{DD} +0.3	٧	XIN,FMIN,AMIN,IF1,IF2,SD
Maximum output voltage 1	Vout1	-0.3~+10.0	٧	P0, P1, P2, P3, P4, CD
Maximum output voltage 2	Vout2	-0.3~V _{DD} +0.3	٧	PD1, PD2, XOUT
Maximum output current	Іоит	0~4.0	mA	P0, P1, P2, P3, P4, CD
Power dissipation	Pd	450*	mW	W.
Operating temperature	Topr	-40~+85	°C	
Storage temperature	Tstg	−55~ +125	°C	

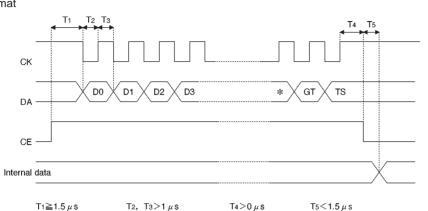

[★] Reduced by 0mW for each increase in Ta of 1°C over 25°C.

•Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	V _{DD}	4.0	_	6.0	٧

Block diagram

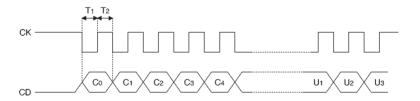
Pin descriptions


Pin No.	Symbol	Pin name	Function	1/0
1	XOUT	- Crystal oscillation	For generation of standard frequency and internal clock.	OUT
2	XIN	Orystal Oscillation	Connected to 7.2 MHz crystal resonator.	IN
3	CE	Chip enable	When CE is H, DA (which is generated when CK starts)	IN
4	СК	Clock signal	goes to the internal shift register, and is latched according to the timing of CE shutdown. Also, output	
5	DA	Serial data	data is generated from the CD terminal when CK starts up.	
6	CD	Count data	Frequency data and unlock data are output.	
7	P0			
8	P1		Construction to the books of the state	Nch open drain
9	P3	Output port	Controlled on the basis of input data.	
10	P4]		
11	PD2	Phase comparison output	Operates in the same ways as PD1	3-state
12	SD	Input port	Output to the CD.	Schmidt input
13	IF2	IF2 input	Intermediate frequency input	IN
14	IF1	IF1 input	Selected on the basis of input data.	
15	P2	Output port	Controlled on the basis of input data.	Nch open drain
16	AMIN	AM input	Local input for AM	IN
17	FMIN	FM input	Local input for FM	IN
18	VDD	Power supply	Power supply, with 4.0V to 6.0V applied voltage.	
19	PD1	Phase comparison output	High level when value obtained by dividing local output is higher than standard frequency. Low level when	3-state
20	Vss	GROUND	value is lower. High impedance when value is same.	

●Electrical characteristics (unless otherwise noted, Ta = 25°C, VDD = 5.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Power supply current 1	IDD1	_	6.0	10.0	mA	FM _{IN} =130MHz, 100mV _{rms}
Quiescent current	IDD2	_	0.3	1.0	mA	No input, PLL=OFF
Input high level voltage	ViH	0.8Vpp	_	_	٧	CE, CK, DA, SD
Input low level voltage	VIL	_	_	0.2VDD	٧	CE, CK, DA, SD
Input high level current 1	IIH1	_	_	1.0	μΑ	CE, CK, DA, SD VIN=VDD
Input high level current 2	IIH2	_	0.3	_	μΑ	XIN V _{IN} =V _{DD}
Input high level current 3	Іінз	_	6.0	_	μΑ	FMIN, AMIN, IF1, IF2 VIN=VDD
Input low level current 1	ĮIL1	-1.0	_	_	μΑ	CE, CK, DA, SD Vin=Vss
Input low level current 2	l11.2	_	-0.3	_	μΑ	XIN V _{IN} =V _{SS}
Input low level current 3	lıцз	_	-0.6	_	μΑ	FMIN, AMIN, IF1, IF2 VIN=Vss
Output low level voltage 1	V _{OL1}	_	0.2	0.5	٧	P0, P1, P2, P3, P4, CD lo=1.0mA
Off level leakage current 1	loff1	_	_	1.0	μΑ	P0, P1, P2, P3, P4, CD Vo=10V
Output low level voltage 2	V _{OL2}	_	_	0.3	٧	FMIN, AMIN, IF1, IF2 IOUT=0.1mA
Output high level voltage	Vон	V _{DD} 1.0	V _{DD} 0.25	_	٧	PD1, PD2 Iout=-1.0mA
Output low level voltage 3	Vol3	_	0.15	1.0	٧	PD1, PD2 lout=1.0mA
Off level leakage current 2	loff2	_	_	100	nA	PD1, PD2 Vout=VDD
Off level leakage current 3	loff3	-100	_	_	nA	PD1, PD2 Vout=Vss
Internal feedback resistor 1	R _{F1}	_	10	_	МΩ	XIN
Internal feedback resistor 2	R _{F2}	_	500	_	kΩ	FMIN, AMIN, IF1, IF2
Input frequency 1	FIN1	_	7.2	_	MHz	XIN, Sine wave, C coupling
Input frequency 2	FIN2	10	_	130	MHz	FMIN, Sine wave, C coupling V _{IN} =50mV _{rms}
Input frequency2-1	FIN2-1	20	_	180	MHz	FMIN, Sine wave, C coupling V _{IN} =100mV _{rms}
Input frequency 3	FIN3	0.5	_	30	MHz	AMIN, Sine wave, C coupling V _{IN} =70mV _{rms}
Input frequency 4	FIN4	0.4	_	16	MHz	IF1, IF2, Sine wave, C couplingV _{IN} =70mV _{rms}
Input amplitude 1	FIN1	50	_	1.5	V _{rms}	FMIN, Sine wave, C coupling 10~130MHz
Input amplitude 1-2	FIN1-2	100	_	1.5	V _{rms}	FMIN, Sine wave, C coupling 130~180MHz
Input amplitude 2	FIN2	70	_	1.5	V _{rms}	AMIN, IF1, IF2, Sine wave, C coupling
Minimum pulse width	TW	1.0	_	_	μs	CK, DA
Input rise time	TR	_	_	500	ns	CE, CK, DA
Input fall time	TF	_	_	500	ns	CE, CK, DA

ONot designed for radiation resistance.


Circuit operationInput data format

Output data format

CE output is set to LO.

Figures for output assume the presence of pullup resistance.

T1, T2> μ s

Output data format

* Data is output only when CT = 1 or GT = 1.

Explanation of the data

(1) Division data: For D_0 through D_{15} (When S=1, use D_4 through D_{15} .)

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13	D14 D15
---	---------

Examples:

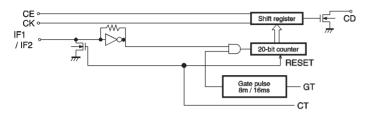
Divide ratio=1106(D) $1106(D) \div 2 = 553(D) = 229(H)$ S=0 1 0 0 1 0 0 0 0 Divide ratio=1107(D)=453(H) S=1, PS=1 1 1 0 0 1 0 0 0 1 0 Divide ratio=926(D)=39E(H) S=1, PS=0 × 0 X X X 1 1 1

- (2) CT: Frequency measurement beginning data 1: Begins measurement.
 - 0: Resets internal counter, IF1 and IF2 go to pul down.
- (3) Output port control data: P0, P1, P2, P3, P4
- (4) PL PH: Control of charge pump output
 PH = 0, PL = 0 PLL operation
 PH = 0, PL = 1 PD1 PD2 LO level
 PH = 1, PL = 0 PD1 PD2 HI level
 PH = 1, PL = 1 PD1 PD2 LO level

(5) R₀, R₁, R₂, standard frequency data

	Data		
R ₀	R ₁	R ₂	Standard frequency
0	0	0	25kHz
0	0	1	12.5kHz
0	1	0	50kHz
0	1	1	10kHz
1	0	0	5kHz
1	0	1	9kHz
1	1	0	1kHz
1	1	1	* PLL OFF

* FMIN = pulldown, AMIN = pulldown, PD = high impedance


- (6) S: switch between FMIN and AMIN 0: FMIN 1: AMIN
- (7) PS: If this bit is set to ON while AMIN is selected, swallow counter division is possible.
- (8) IFS: Selection between IF1 and IF2 during IF count 0: IF1 1: IF2
- (9) GT: Frequency measurement time and unlock detection ON/OFF

СТ	GT	Frequency measurement	Unlock detection	Data output
0	0	OFF	OFF	NG
0	1	OFF	ON	
1	0	ON Gate time = 8 ms	ON	OK
1	1	ON Gate time = 16 ms	ON	

(10) TS: Test data (0) is input

Frequency counter

(1) Structure

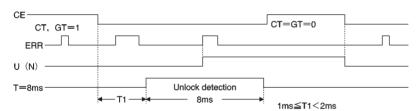
(2) How the frequency counter operates

When control data CT equals 1, the 20-bit counter and the amp go into operation. When CT equals 0, amp input goes to pulldown and the counter is reset.

Measuring time (gate pulse) is selected (8 ms/16 ms) on the basis of control data GT.

When control data CT equals 0, the counter is reset.

(3) Explanation of output data

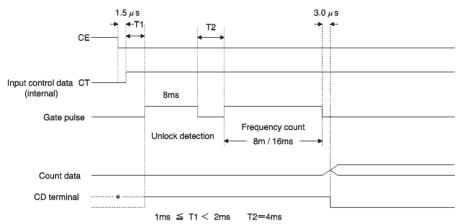

D0: LSB D19: MSB

Unlock detection

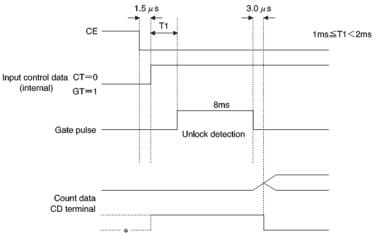
When control data GT equals 1, or CT equals 1, the unlock detection circuit goes into operation for 8ms.

When CT equals 1, the unlock detection circuits stops operating before the frequency counter gate pulse is emitted.

When CT equals 0, or GT equals 0, the unlock detection circuit is reset.



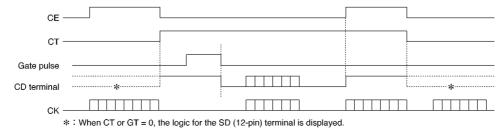
Explanation of the output data


U0 U1 U2 U3
0 0 0 0 0 ERR < 1.1
$$\mu$$
s
1 0 0 0 1.1 μ s < ERR < 2.2 μ s
1 1 0 0 2.2 μ s < ERR < 3.3 μ s
1 1 1 0 3.3 μ s < ERR < 4.4 μ s
1 1 1 1 4.4 μ s < ERR

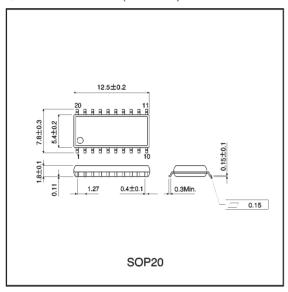
Frequency counter and unlock detection

(1) When CT = 1: Frequency count and unlock detection are carried out.

(2) When CT = 0 and GT = 1: Only unlock detection is carried out.



Explanation of CD terminal


When frequency measurement or unlock detection is finished, the CD terminal goes to LO to indicate that the count and unlock detection have finished.

It also synchronizes with CK to output counter data.

When the next data is input, it goes to HI.

●External dimensions (Units: mm)

