Panel interface BU8315S / BU8315F

The BU8315S and BU8315F are LED drivers with a flashing function.

They can be connected in series to panel PCBs in equipment such as telephones, facsimile machines, and copying ma chines, and to microcomputers of main PCBs, and significantly reduce the amount of wiring required.

Applications

Sets with operation panels, such as telephones, facsimile machines, and copying machines

Features

1) LED interface (14-bit serial in/parallel out).

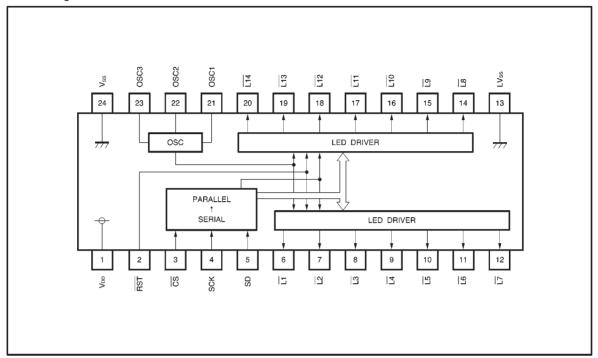
2) Built-in LED automatic flashing function.

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit	Conditions
Power supply	voltage	V _{DD}	7.0	V	
Power dissipation	BU8315S BU8315F	Pd	1050*1 450 *2	mW	
Operating temperature		Topr	−25~+ 75	°C	
Storage temperature		Tstg	−55 ∼ + 125	°C	
Input voltage		VIN	Vss-0.3~Vpp+0.3	V	CS, SCK, SD, RST pins
Output voltage		Vouт	Vss~7.0	V	L1~L14 pins
Input current		Іоит	20	mA	L1∼L14 pins

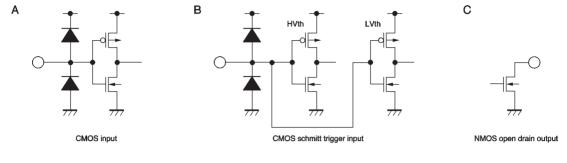
^{*1} Reduced by 10.5mW for each increase in Ta of 1°C over 25°C.

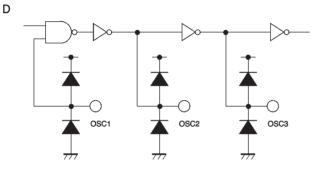
• Recommended operating conditions (Ta = 25°C)


Parameter	Symbol	Limits	Unit	Conditions
Power supply voltage	V _{DD}	2.0~5.5	V	*3
Oscillation frequency	fosc	500	Hz	$R_1=1.0M\Omega$, $R_X=270k\Omega$, $C_X=3.3n$ F

^{*3} Please be aware that LED lighting also depends on the characteristics of the LED.

^{*2} Reduced by 4.5mW for each increase in Ta of 1°C over 25°C.


●Block diagram



Pin descriptions

Pin No.	Pin name	Function	Model
7~12 14~20	<u>L1</u> ~ <u>L7</u> <u>L8</u> ~ <u>L14</u>	These are the LED output pins, and are ON at "1" (LOW) and OFF at "0" (Z (high impedance)).	С
3	CS	This is the chip select input pin. Serial input is enabled when this pin is LOW. Serial data is read internally at the rising edge.	В
4	SCK	This is the shift clock input pin for serial data. Serial data is read from the SD pin one bit at a time, at the rising edge of a Schmitt trigger input.	В
5	SD	This is the serial data input pin. Data is input and output in the pertinent data format.	Α
21~23	OSC1~OSC3	These are the I/O pins for the internal oscillator. The recommended values are as follows: $R_1=1.0M\Omega$, $R_2=270k\Omega$, $C_3=3.3nF$.	D
2	RST	This is the reset signal input pin. Normal operation is carried out when this pin is HIGH. When this pin is LOW, all data is reset, and the internal oscillator stops.	В
1	V _{DD}	This is the V _{DD} pin.	
24	Vss	This is the Vss pin.	
13	LVss	This is the Vss pin for LED output.	

Input/output circuits

Oscillation circuit input/output

Fig. 1

• Electrical characteristics (unless otherwise noted, Ta = 25 $^{\circ}$ C, V_{DD} = 3 \sim 5.5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement Circuit
Supply current 1	Іооі	_	0.01	1.0	μΑ	At rest (RST=L)	Fig.3
Supply current 2	IDD2	_	7	20	μΑ	When operating V _{DD} =3.0V	Fig.3
Supply current 3	IDD3	_	_	200	μΑ	When operating V _{DD} =5.5V	Fig.3
Input high level voltage	Vih	0.8VDD	_	V _{DD}	٧	*1	Fig.3
Input low level voltage	VIL	0	_	0.2V _{DD}	٧	*1	Fig.3
Input high level current	lie	_	_	1	μΑ	*1	Fig.3
Input low level current	lıL	_	_	1	μA	*1	Fig.3
Output voltage	Vo	0	_	0.5	٧	*2	Fig.3
Setup time S	tsus	100	_	_	ns		Fig.4
Setup time I	tsui	100	_	_	ns		Fig.4
Hold time I	tнı	100	_	_	ns		Fig.4
Serial clock cycle	toyo	500	_	_	ns	DUTY=50%	Fig.4
Setup time W	tsuw	100	_	_	ns		Fig.4

^{*1} \overline{CS} , SCK, SD, \overline{RST} pins *2 For Pins $\overline{L1}$ to $\overline{L14}$, when $V_{00} = 5$ V and $I_{0L} = 10$ mA

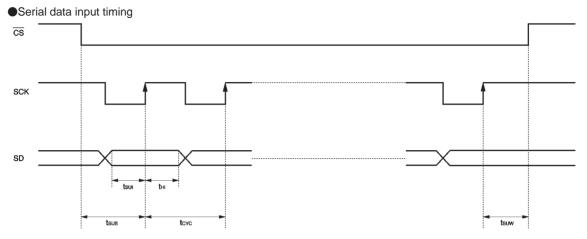


Fig. 2 Data input timing

Measurement circuits

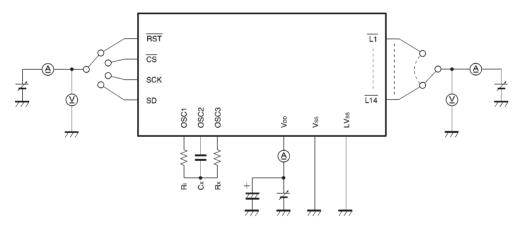


Fig. 3 DC characteristics measurement circuit

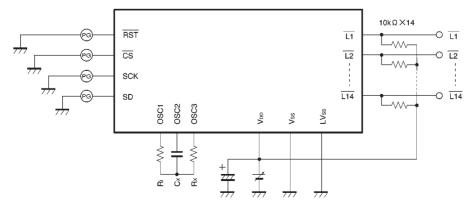
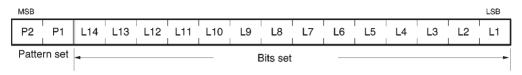
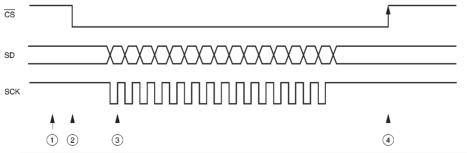



Fig. 4 AC characteristics measurement circuit

Circuit operation

(1) LED control command data format (for serial data, the MSB is first)


P2	P1	Flashing pattern (sec)		
		ON	OFF	
0	0	_	Always	
0	1	0.125	0.125	
1	0	0.5	0.5	
1	1	Always	_	

L14~L1	Operation (LED output)
0	Does not change (status before input)
1	Does not change (status before input) Changes to pattern set with P1 and P2

(2) Shifts in flashing pattern based on LED control commands (example of data input)

MSB Input data LSB		ВОТ	LED output		
Pattern	Bit	RST	Odd-numbered	Even-numbered	
		L	OFF	OFF	
01	01010101010101	н	FAST	↓	
10	10101010101010	†	†	SLOW	
11	01010101010101	1	ON	↓	
11	10101010101010	ļ .	ļ .	ON	
10	01010101010101	1	SLOW	↓	
01	10101010101010	1	†	FAST	
00	11111111111111	ļ	OFF	OFF	

(3) Example of serial input of LED control command

State	CPU operation (#)
1	During standby, $\overline{\text{CS}}$ = HIGH, SCK = LOW
2	CS is set LOW
3	Serial data is input to SD in sequential order, at the rising edge of SCK.
(4)	After 16 bits have been input, a CS rising edge is applied, and data is read internally.

Operation notes

- (1) When the power supply is turned on, the contents of the register are unstable, so the \overline{RST} pin should be set to LOW and a reset initiated.
- (2) The maximum LED output per bit is 20mA, so that the maximum LED output for a total of 14 bits is 140mA.

Electrical characteristic curves

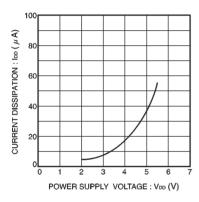
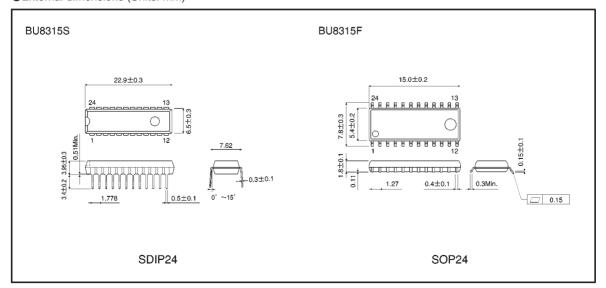



Fig. 5 Current dissipation vs. power supply voltage

Fig. 6 Output voltage vs. power supply voltage

External dimensions (Units: mm)

