MOTOR®LA6供应商 SEMICONDUCTOR TECHNICAL DATA

捷多邦,专业PCB打样工厂,24小时加入地计约is document by BUL146/D

Designer's™ Data Sheet SWITCHMODE™

NPN Bipolar Power Transistor For Switching Power Supply Applications

The BUL146/BUL146F have an applications specific state-of-the-art die designed for use in fluorescent electric lamp ballasts to 130 Watts and in Switchmode Power supplies for all types of electronic equipment. These high voltage/high speed transistors offer the following:

- Improved Efficiency Due to Low Base Drive Requirements:
 - High and Flat DC Current Gain
 - Fast Switching
 - No Coil Required in Base Circuit for Turn–Off (No Current Tail)
- Full Characterization at 125°C
- Parametric Distributions are Tight and Consistent Lot-to-Lot
- Two Package Choices: Standard TO–220 or Isolated TO–220
- BUL146F, Isolated Case 221D, is UL Recognized to 3500 V_{RMS}: File #E69369

MAXIMUM RATINGS

Rating	Symbol	BUL146	BUL146F	Unit
Collector–Emitter Sustaining Voltage	VCEO	40	Vdc	
Collector–Emitter Breakdown Voltage	VCES	70	Vdc	
Emitter-Base Voltage	VEBO	9.	Vdc	
Collector Current — Continuous — Peak(1)	IC ICM	6. 1:	-	Adc
Base Current — Continuous — Peak(1)	I _B I _{BM}	4. 8.	Adc	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	VISOL		4500 3500 1500	V
Total Device Dissipation(T _C = 25°C)Derate above 25°C	PD	100 0.8	40 0.32	Watts W/°C
Operating and Storage Temperature	TJ, Tstg	– 65 t	°C	

THERMAL CHARACTERISTICS

Rating	Symbol	BUL44	BUL44F	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	R _{θJC} R _{θJA}	1.25 62.5	3.125 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	20	60	°C

BUL146*

BUL146F*

*Motorola Preferred Device

POWER TRANSISTOR

6.0 AMPERES

700 VOLTS

40 and 100 WATTS

BUL146 CASE 221A-06 TO-220AB

BUL146F CASE 221D-02 ISOLATED TO-220 TYPE UL RECOGNIZED

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Мах	Unit	

off offattaorEntories					
Collector–Emitter Sustaining Voltage (I _C = 100 mA, L = 25 mH)	VCEO(sus)	400	—	_	Vdc
Collector Cutoff Current (V _{CE} = Rated V _{CEO} , I _B = 0)	ICEO	—	—	100	μAdc
Collector Cutoff Current (VCE = Rated VCES, VEB = 0)	ICES	—	—	100	μAdc
$(T_{C} = 125^{\circ}C)$		—	-	500	
$(V_{CE} = 500 \text{ V}, \text{ V}_{EB} = 0)$ $(T_C = 125^{\circ}\text{C})$		—	—	100	
Emitter Cutoff Current (VEB = 9.0 Vdc, $I_{C} = 0$)	IEBO	_	_	100	μAdc

Emitter Cutoff Current ($V_{EB} = 9.0$ Vac, $I_{C} = 0$)

(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle \leq 10%.

(2) Proper strike and creepage distance must be provided.

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit

referred devices are Motorola recommended choices for future use and best overall value.

pdf.BEyd.com

(continued)

	Characteristic					Min	Тур	Мах	Unit
ON CHARACTERISTICS									
Base–Emitter Saturation	n Volta	ge (I _C = 1.3 Adc, I (I _C = 3.0 Adc, I	B = 0.13 B = 0.6	3 Adc) Adc)	V _{BE(sat)}	—	0.82 0.93	1.1 1.25	Vdc
Collector-Emitter Satura	ation V	$(I_{C} = 1.3 \text{ A})$ $(I_{C} = 3.0 \text{ A})$		$(T_{C} = 125^{\circ}C)$	VCE(sat)		0.22 0.20 0.30 0.30	0.5 0.5 0.7 0.7	Vdc
DC Current Gain (I _C = (I _C = (I _C = (I _C =	hFE	14 	— 30 20 20 13 12 20	34 — — — — —					
DYNAMIC CHARACTERI	ISTICS	6							
Current Gain Bandwidth	-	-		1.0 MHz)	fT	_	14		MHz
Output Capacitance (VC	CB = 10	0 Vdc, $I_E = 0, f = 1.0$) MHz)		COB		95	150	pF
Input Capacitance (VEB	= 8.0	V)			CIB		1000	1500	pF
Dynamic Saturation Volt	age:	(I _C = 1.3 Adc I _{B1} = 300 mAdc	1.0 µs	(T _C = 125°C)		_	2.5 6.5		
Determined 1.0 μ s and 3.0 μ s respectively after		$V_{CC} = 300 \text{ V}$	3.0 µs	(T _C = 125°C)	N/	_	0.6 2.5		v
rising I _{B1} reaches 909 final I _{B1}	% of	$(I_{C} = 3.0 \text{ Adc})$ $I_{B1} = 0.6 \text{ Adc})$ $V_{CC} = 300 \text{ V})$	1.0 µs	(T _C = 125°C)	VCE(dsat)	_	3.0 7.0		
(see Figure 18)			3.0 µs	(T _C = 125°C)		_	0.75 1.4		
WITCHING CHARACTE	RISTI	CS: Resistive Load	d (D.C. ≤	10%, Pulse Widt	h = 20 μs)				
Turn–On Time		= 1.3 Adc, I _{B1} = 0.13 = 0.65 Adc, V _{CC} = 3		(T _C = 125°C)	ton		100 90	200	ns
Turn–Off Time	$(T_{\rm C} = 125^{\circ})$				toff	_	1.35 1.90	2.5 —	μs
Turn-On Time		= 3.0 Adc, I _{B1} = 0.6 = 1.5 Adc, V _{CC} = 30		(T _C = 125°C)	t _{on}	_	90 100	150 —	ns
Turn–Off Time	$(T_{\rm C} = 125^{\circ}{\rm C})$				toff	_	1.7 2.1	2.5 —	μs
WITCHING CHARACTE	RISTI	CS: Inductive Load	d (V _{clam}	p = 300 V, V _{CC} =	: 15 V, L = 200 μH	- -)			
Fall Time	(I _C =	= 1.3 Adc, I _{B1} = 0.13 = 0.65 Adc)	3 Adc	(T _C = 125°C)	^t fi	_	115 120	200	ns
Storage Time	$(T_{\rm C} = 12)$				t _{si}	_	1.35 1.75	2.5	μs
Crossover Time				(T _C = 125°C)	t _C	_	200 210	350 —	ns
Fall Time		= 3.0 Adc, I _{B1} = 0.6 = 1.5 Adc)	Adc	(T _C = 125°C)	^t fi	_	85 100	150 —	ns
Storage Time	-			(T _C = 125°C)	t _{si}	_	1.75 2.25	2.5	μs
Crossover Time	$(T_{C} = 125^{\circ}C)$ $(T_{C} = 125^{\circ}C)$				t _c		175 200	300	ns
Fall Time		= 3.0 Adc, I _{B1} = 0.6 = 0.6 Adc)	Adc	(T _C = 125°C)	t _{fi}	80 —		180 —	ns
Storage Time				(T _C = 125°C)	t _{si}	2.6 —		3.8	μs
				/		 	230	350	

ELECTRICAL CHARACTERISTICS — continued ($T_C = 25^{\circ}C$ unless otherwise noted)

TYPICAL STATIC CHARACTERISTICS

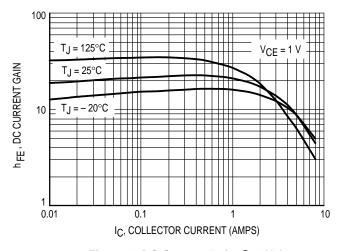


Figure 1. DC Current Gain @ 1 Volt

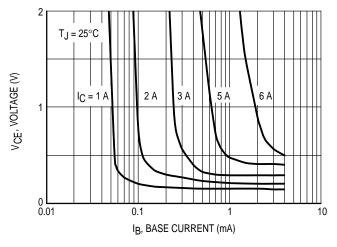


Figure 3. Collector Saturation Region

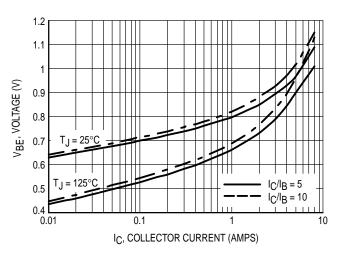


Figure 5. Base–Emitter Saturation Region

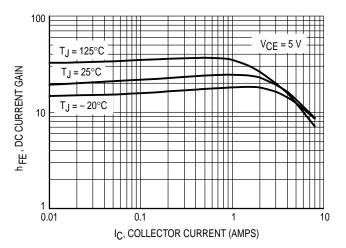


Figure 2. DC Current Gain @ 5 Volts

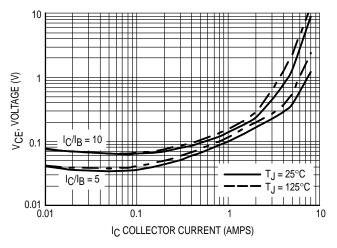
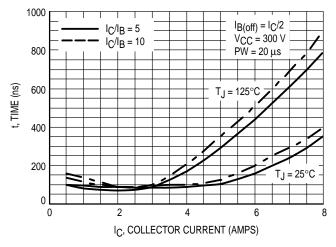



Figure 4. Collector–Emitter Saturation Voltage

Figure 6. Capacitance

TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

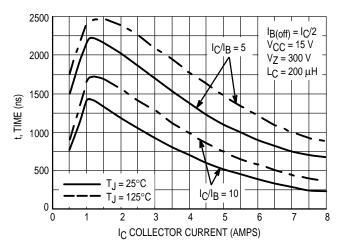


Figure 9. Inductive Storage Time, tsi

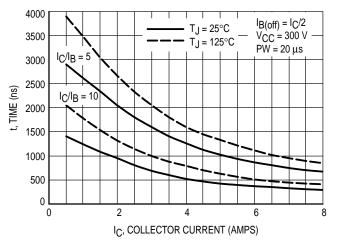


Figure 8. Resistive Switching, toff

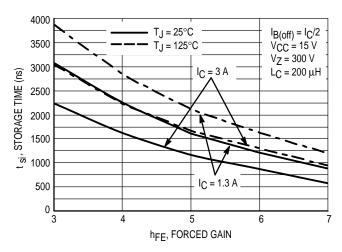
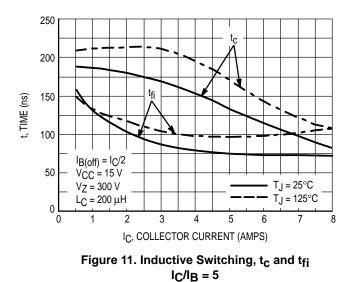



Figure 10. Inductive Storage Time, t_{Si}(hFE)

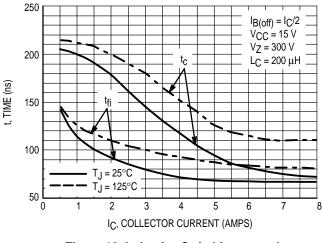
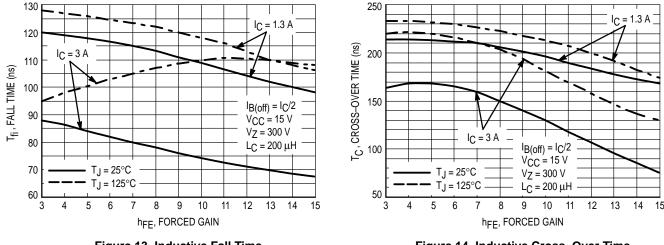



Figure 12. Inductive Switching, t_C and t_{fi} IC/IB = 10

TYPICAL SWITCHING CHARACTERISTICS $(I_{B2} = I_C/2 \text{ for all switching})$

Figure 13. Inductive Fall Time

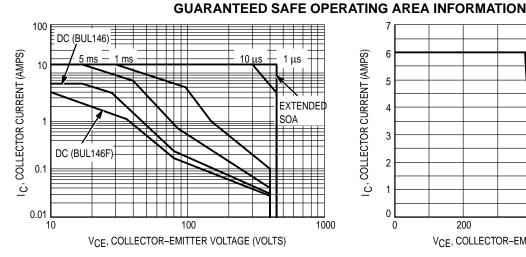


Figure 15. Forward Bias Safe Operating Area

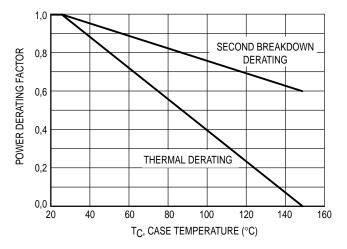


Figure 17. Forward Bias Power Derating

Figure 14. Inductive Cross–Over Time

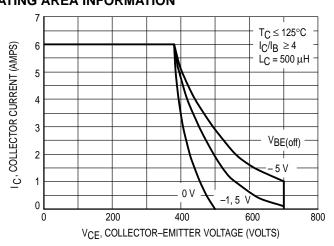


Figure 16. Reverse Bias Switching Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on T_C = 25° C; T_{J(pk)} is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C > 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown in Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. TJ(pk) may be calculated from the data in Figure 20 and 21. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base-to-emitter junction reverse-biased. The safe level is specified as a reverse-biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

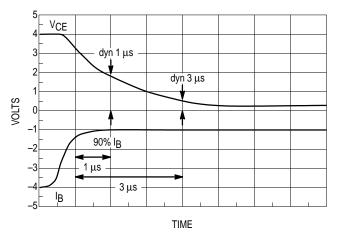


Figure 18. Dynamic Saturation Voltage Measurements

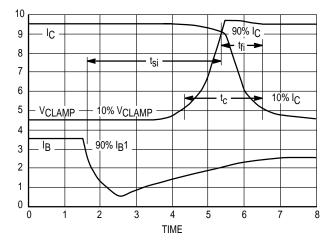


Figure 19. Inductive Switching Measurements

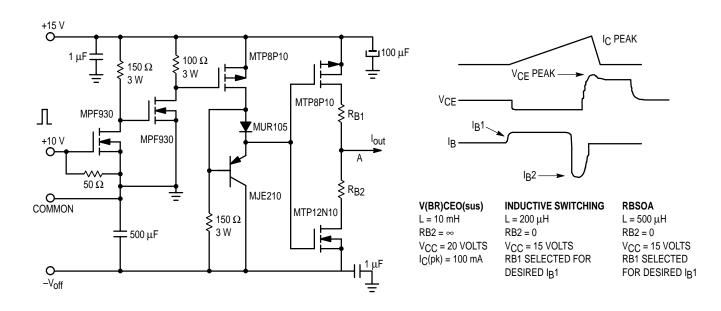


Table 1. Inductive Load Switching Drive Circuit

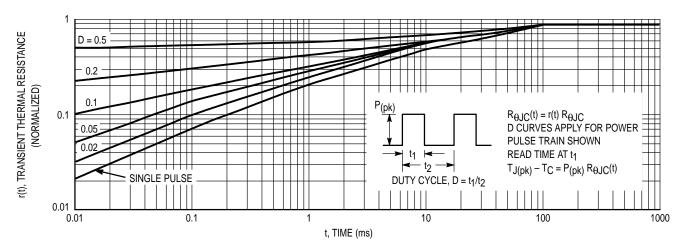


Figure 20. Typical Thermal Response ($Z_{\theta JC}(t)$) for BUL146

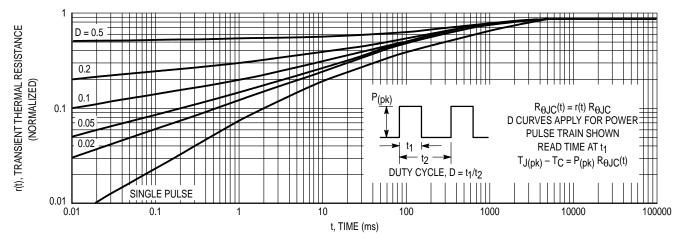
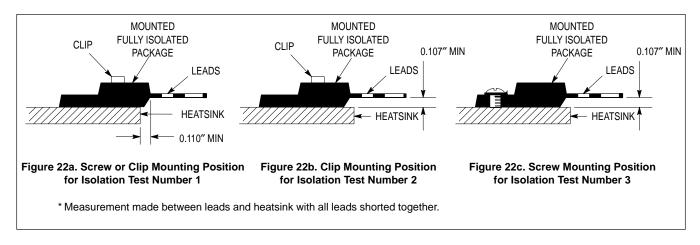
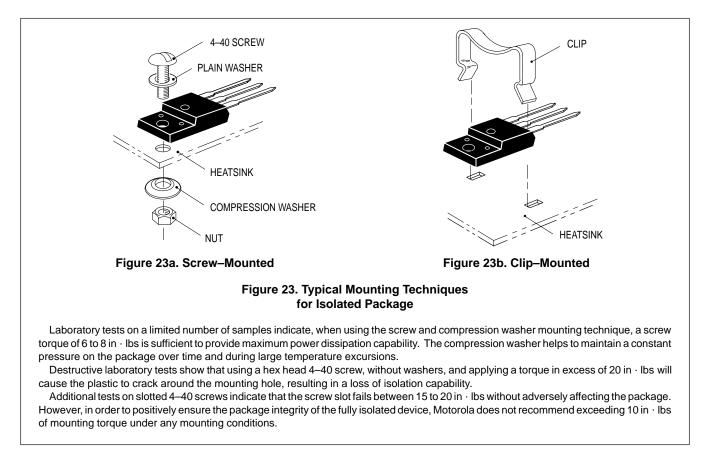
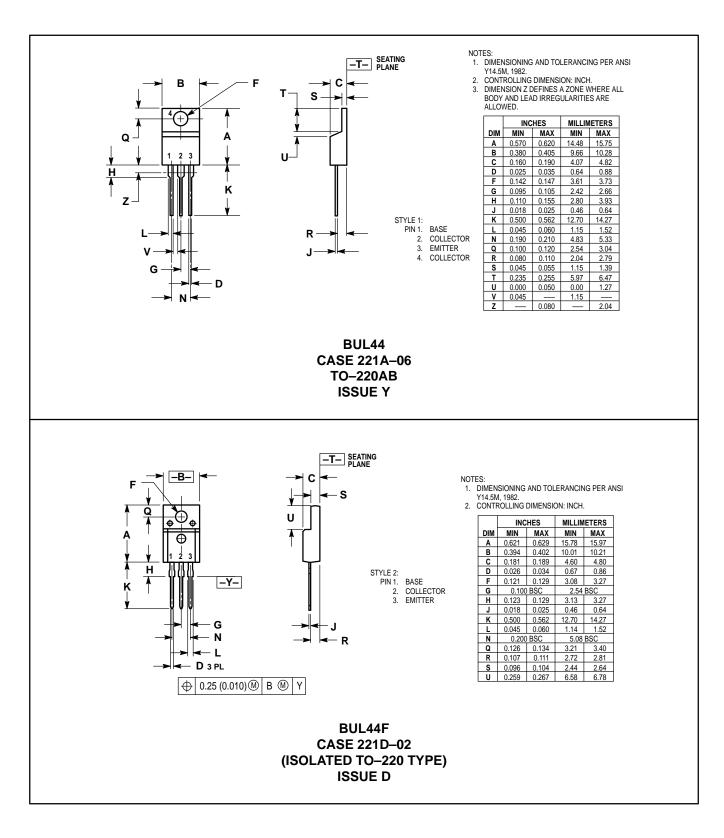




Figure 21. Typical Thermal Response ($Z_{\theta JC}(t)$) for BUL146F



MOUNTING INFORMATION**

** For more information about mounting power semiconductors see Application Note AN1040.

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (**A**) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

