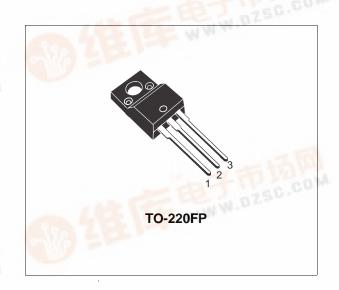
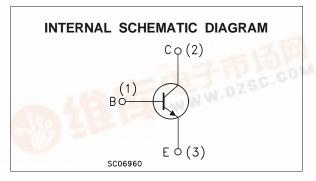


BUL312FP

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR


- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- FULLY CHARACTERIZED AT 125°C
- LARGE RBSOA
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING


APPLICATIONS

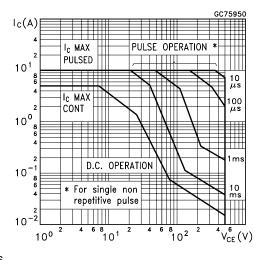
- HORIZONTAL DEFLECTION FOR TV
- SMPS
- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING

The BUL312FP is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.

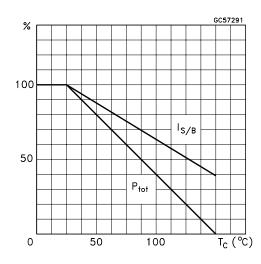
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VCES	Collector-Emitter Voltage (V _{BE} = 0)	1150	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	500	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	9 9 0 2	V
Ic	Collector Current	5	Α
I _{CM}	Collector Peak Current (t _p <5 ms)	10	Α
I _B	Base Current	3	Α
I _{BM}	Base Peak Current (tp <5 ms)	4	Α
Ptot	Total Dissipation at Tc = 25 °C	36	W
V _{isol}	Insulation Withstand Voltage (RMS) from All Three Leads to External Heatsink	1500	V
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

THERMAL DATA

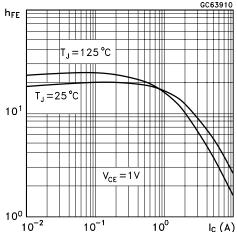

R _{thj-case}	Thermal Resistance Junction-Case	Max	3.5	°C/W	
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	62.5	°C/W	

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

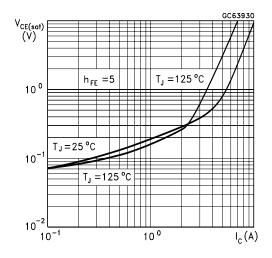

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1150 V V _{CE} = 1150 V T _j = 125 °C			1 2	mA mA
ICEO	Collector Cut-off Current (I _B = 0)	Vce = 500 V			250	μΑ
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	500			V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA	10			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_C = 1 \text{ A}$ $I_B = 0.2 \text{ A}$ $I_C = 2 \text{ A}$ $I_B = 0.4 \text{ A}$ $I_C = 3 \text{ A}$ $I_B = 0.6 \text{ A}$			0.5 0.7 1.1	>
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_C = 1 \text{ A}$ $I_B = 0.2 \text{ A}$ $I_C = 2 \text{ A}$ $I_B = 0.4 \text{ A}$ $I_C = 3 \text{ A}$ $I_B = 0.6 \text{ A}$			1 1.1 1.2	V V V
h _{FE} *	DC Current Gain	I _C = 10 mA V _{CE} = 5 V I _C = 3 A V _{CE} = 2.5 V	8 8		13.5	
t _s	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{ll} I_{C} = 2 \; A & I_{B1} = 0.4 \; A \\ V_{BE(off)} = -5 \; V & R_{BB} = 0 \; \Omega \\ V_{CL} = 250 \; V & L = 200 \; \mu H \\ (see fig. 1) & \end{array}$		1.2 80	1.9 160	μs ns
t _s	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{lll} I_{C} = 2 \; A & I_{B1} = 0.4 \; A \\ V_{BE(off)} = \text{-5V} & R_{BB} = 0 \; \Omega \\ V_{CL} = 250 \; V & L = 200 \; \mu\text{H} \\ T_{j} = 125 \; ^{\text{O}}\text{C} & (\text{see fig. 1}) \end{array}$		1.8 150		μs ns

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

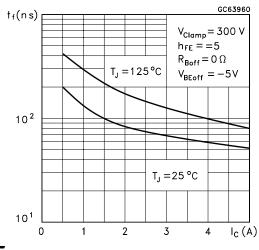
Safe Operating Areas

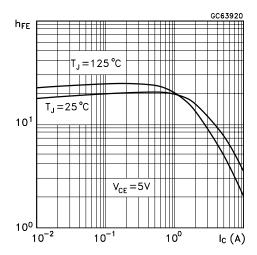


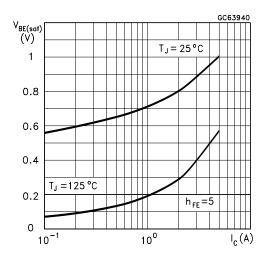
Derating Curve

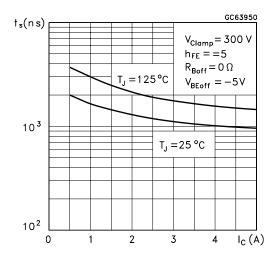


47/


DC Current Gain


Collector Emitter Saturation Voltage


Inductive Fall Time


DC Current Gain

Base Emitter Saturation Voltage

Inductive Storage Time

Reverse Biased SOA

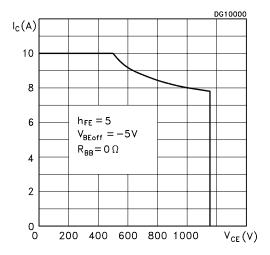
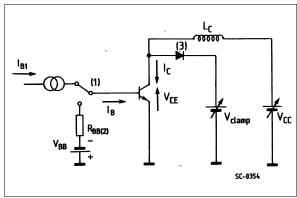
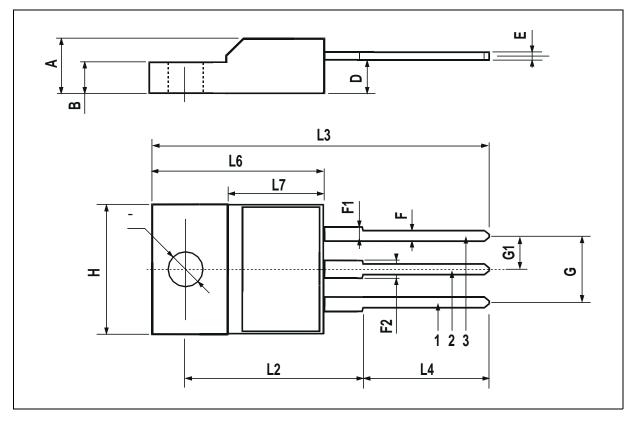



Figure 1: Inductive Load Switching Test Circuit



- (1) Fast electronic switch
- (2) Non-inductive Resistor (3) Fast recovery rectifier

47/ 4/6

TO-220FP MECHANICAL DATA

DIM.	mm		inch			
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2004 STMicroelectronics – All Rights reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com