Designer's™ Data Sheet

NPN Silicon Power Transistor

High Voltage SWITCHMODE™ Series

Designed for use in electronic ballast (light ballast) and in Switchmode Power supplies up to 50 Watts. Main features include:

- · Improved Efficiency Due to:
 - Low Base Drive Requirements (High and Flat DC Current Gain hFE)
 - Low Power Losses (On-State and Switching Operations)
 - Fast Switching: t_{fi} = 100 ns (typ) and t_{Si} = 3.2 μs (typ) @ I_C = 2.0 A, I_{B1} = I_{B2} = 0.4 A
- Full Characterization at 125°C
- Tight Parametric Distributions Consistent Lot-to-Lot
- BUL45F, Case 221D, is UL Recognized at 3500 V_{RMS}: File #E69369

MAXIMUM RATINGS

Rating	Symbol	BUL45	BUL45F	Unit
Collector–Emitter Sustaining Voltage	VCEO	400		Vdc
Collector-Emitter Breakdown Voltage	VCES	700		Vdc
Emitter-Base Voltage	VEBO	9.0		Vdc
Collector Current — Continuous — Peak(1)	I _C	5.0 10		Adc
Base Current	lΒ	2.0		Adc
RMS Isolated Voltage(2) Test No. 1 Per Fig. 22a (for 1 sec, R.H. < 30%, T _C = 25°C) Test No. 2 Per Fig. 22b Test No. 3 Per Fig. 22c	VISOL	=	4500 3500 1500	Volts
Total Device Dissipation (T _C = 25°C) Derate above 25°C	PD	75 0.6	35 0.28	Watts W/°C
Operating and Storage Temperature	TJ, T _{stg}	– 65 t	o 150	°C

THERMAL CHARACTERISTICS

Rating	Symbol	MJE18006	MJF18006	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	$R_{ heta JC}$ $R_{ heta JA}$	1.65 62.5	3.55 62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	No III	1			
Collector–Emitter Sustaining Voltage (I _C = 100 mA, L = 25 mH)	VCEO(sus)	400	_	_	Vdc
Collector Cutoff Current (VCE = Rated VCEO, IB = 0)	ICEO	_	_	100	μAdc
Collector Cutoff Current (V _{CE} = Rated V _{CES} , V _{EB} = 0) (T _C = 125°C)	ICES	_	_ _	10 100	μAdc
Emitter Cutoff Current (V _{EB} = 9.0 Vdc, I _C = 0)	I _{EBO}	_	_	100	μAdc

- (1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle ≤ 10%.
- (2) Proper strike and creepage distance must be provided.

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — Tepresenting boundaries on device characteristics — are given to facilitate "worst case" design.

recerred devices are Motorola recommended choices for future use and best overall value.

*Motorola Preferred Device

POWER TRANSISTOR 5.0 AMPERES 700 VOLTS 35 and 75 WATTS

CASE 221A-06 TO-220AB

BUL45F CASE 221D-02 ISOLATED TO-220 TYPE UL RECOGNIZED

(continued)

ELECTRICAL CHARACTERISTICS — **continued** (T_C = 25°C unless otherwise noted)

Characteristic					Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS	3					•	•		•
Base–Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.2 Adc) (I _C = 2.0 Adc, I _B = 0.4 Adc)					V _{BE(sat)}	_	0.84 0.89	1.2 1.25	Vdc
Collector–Emitter Saturation Voltage (IC = 1.0 Adc, IB = 0.2 Adc)					V _{CE(sat)}	_	0.175	0.25	Vdc
, 5	,			(T _C = 125°C)		-	0.150	_	
Collector–Emitter Satu (I _C = 2.0 Adc, I _B = 0		oltage o		(T _C = 125°C)	V _{CE(sat)}		0.25 0.275	0.4	Vdc
DC Current Gain (I _C =	0.3 Add	c, V _{CE} = 5.0 Vdc)		(-	hFE	14	_	34	_
(IC =	2.0 Add	c, V _{CE} = 1.0 Vdc)		$(T_C = 125^{\circ}C)$		7.0	32 14	_	
_		dc, V _{CE} = 5.0 Vdc)		$(T_C = 125^{\circ}C)$		5.0	12	_	
						10	22		
Current Gain Bandwidt			Vdc f -	1 0 MHz)	f	Ι _	12	_	MHz
Output Capacitance (V				1.0 WII 12)	T _{Ob}		50	75	pF
Input Capacitance (VE		_	O IVII IZ)		C _{ib}	 	920	1200	рF
Dynamic Saturation Vo		<u> </u>			Olb	 	1.75	1200	Pi
Determined 1.0 μs a	-	(I _C = 1.0 Adc I _{B1} = 100 mAdc	1.0 μs	(T _C = 125°C)		_	4.4	_	
3.0 μs respectively a	after	VCC = 300 V)	3.0 μs	(T _C = 125°C)		_	0.5 1.0	_	
rising I _{B1} reaches 90 of final I _{B1})%			(10 1200)	VCE (Dyn sat)		1.85	_	Vdc
(see Figure 18)		(I _C = 2.0 Adc I _{B1} = 400 mAdc	1.0 μs	(T _C = 125°C)		_	6.0	_	
		V _{CC} = 300 V)	3.0 μs	(T _C = 125°C)		_	0.5 1.0	_ _	
SWITCHING CHARACT	ERISTI	CS: Resistive Loa	d			•	•		
Turn-On Time			= 0.4 Ad	lc (T _C = 125°C)	^t on	_	75 120	110 —	ns
Turn-Off Time		Cycle < 20% = 300 V)		(T _C = 125°C)	toff	_	2.8 3.5	3.5	μs
SWITCHING CHARACT	 EDISTI	CS: Industive Lea	d (\/oo -		0L V	300 //40/	<u> </u>		
Fall Time		2.0 Adc, I _{B1} = 0.4		= 13 vac, LC = 20	υμι, v _{clamp = ·} t _{fi}	70	Ι_	170	ns
	I _{B2} =	= 0.4 Adc)		(T _C = 125°C)	-11	_	200	_	
Storage Time				(T _C = 125°C)	t _{Si}	2.6 —	— 4.2	3.8 —	μs
Crossover Time				(T _C = 125°C)	t _C	_	230 400	350 —	ns
Fall Time		1.0 Adc, I _{B1} = 100 = 0.5 Adc)) mAdc	(T _C = 125°C)	t _{fi}	_	110 100	150 —	ns
Storage Time				(T _C = 125°C)	t _{si}	_	1.1 1.5	1.7 —	μs
Crossover Time				(T _C = 125°C)	t _C	_ _	170 170	250 —	ns
Fall Time	(I _C = 2.0 Adc, I _{B1} = 250 mAdc I _{B2} = 2.0 Adc) (T _C = 125°C)				t _{fi}	_	80	120	ns
Storage Time	1			(T _C = 125°C)	t _{Si}	_	0.6	0.9	μs
Crossover Time $ (T_{C} = 125^{\circ}C) $				t _C	_	175	300	ns	

TYPICAL STATIC CHARACTERISTICS

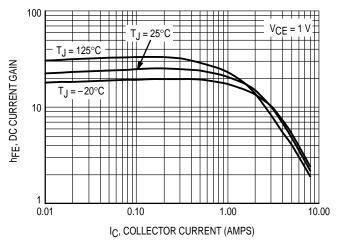


Figure 1. DC Current Gain @ 1 Volt

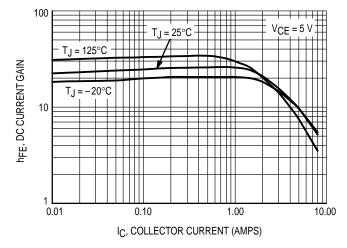


Figure 2. DC Current Gain at @ 5 Volts

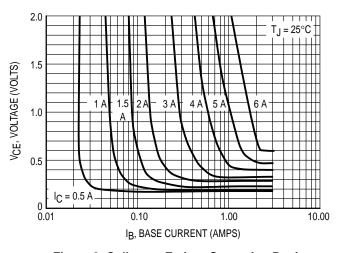


Figure 3. Collector-Emitter Saturation Region

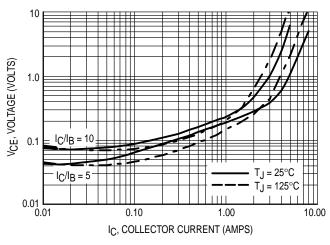


Figure 4. Collector–Emitter Saturation Voltage

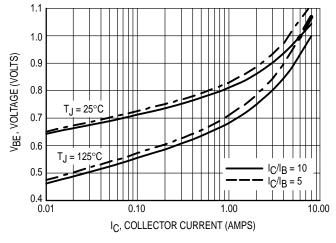


Figure 5. Base-Emitter Saturation Region

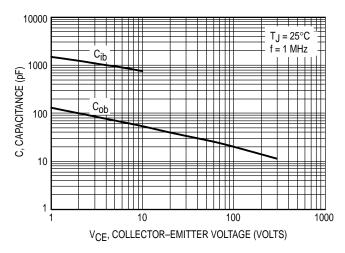


Figure 6. Capacitance

TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

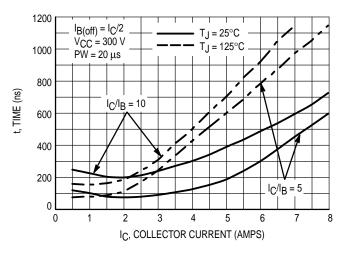


Figure 7. Resistive Switching, ton

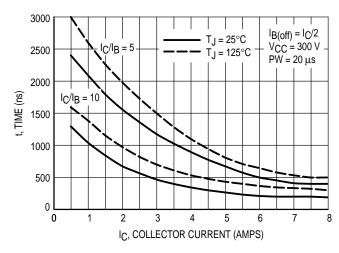


Figure 8. Resistive Switching, toff

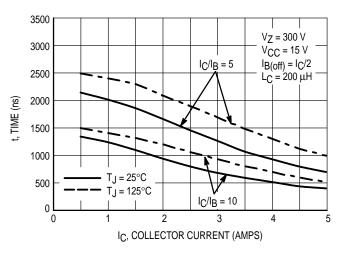


Figure 9. Inductive Storage Time, tsi

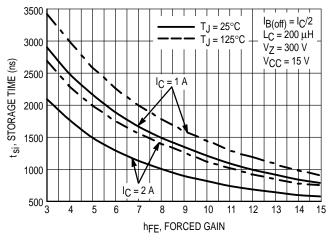


Figure 10. Inductive Storage Time, tsi(hFE)

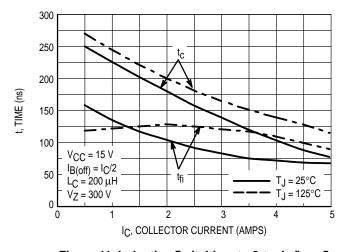


Figure 11. Inductive Switching, $t_C \& t_{fi}$, $I_C/I_B = 5$

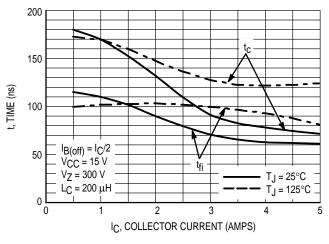
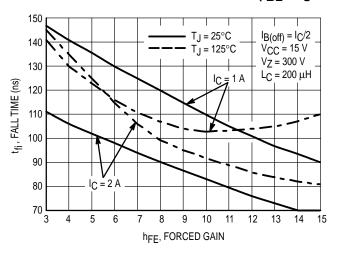



Figure 12. Inductive Switching, t_C & t_{fi}, I_C/I_B = 10

TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

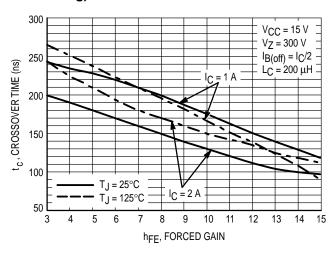
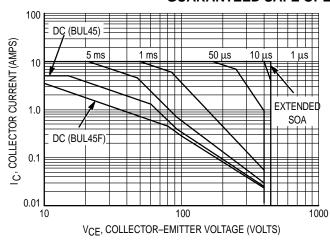



Figure 13. Inductive Fall Time, tfi(hFE)

Figure 14. Crossover Time

GUARANTEED SAFE OPERATING AREA INFORMATION

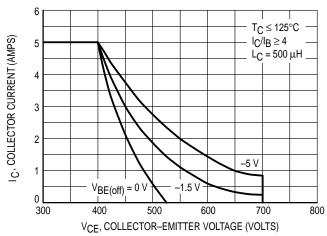


Figure 15. Forward Bias Safe Operating Area

Figure 16. Reverse Bias Switching Safe Operating Area

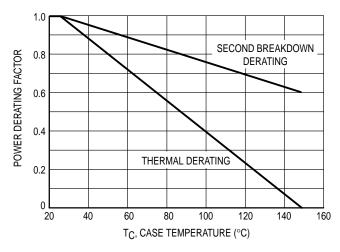
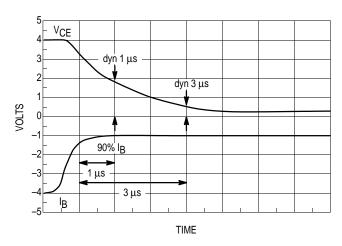



Figure 17. Forward Bias Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on TC = 25°C; T_{J(pk)} is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown in Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. T_{J(pk)} may be calculated from the data in Figures 20 and 21. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base-to-emitter junction reverse-biased. The safe level is specified as a reverse-biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

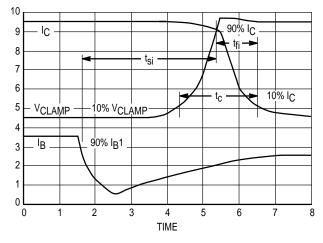
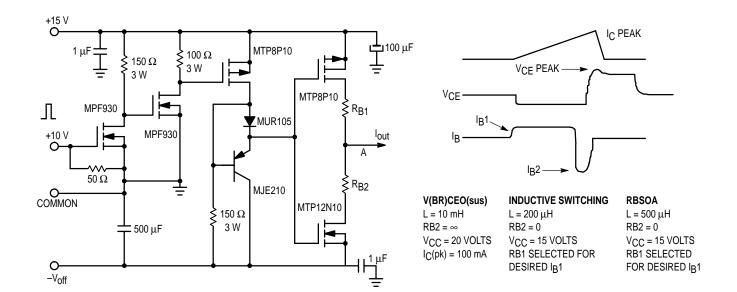



Figure 18. Dynamic Saturation Voltage Measurements

Figure 19. Inductive Switching Measurements

Table 1. Inductive Load Switching Drive Circuit

TYPICAL THERMAL RESPONSE

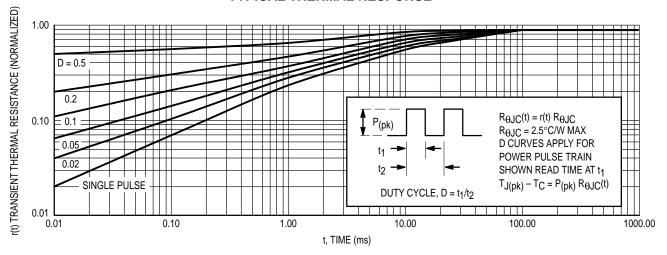


Figure 20. Typical Thermal Response ($Z_{\theta,JC}(t)$) for BUL45

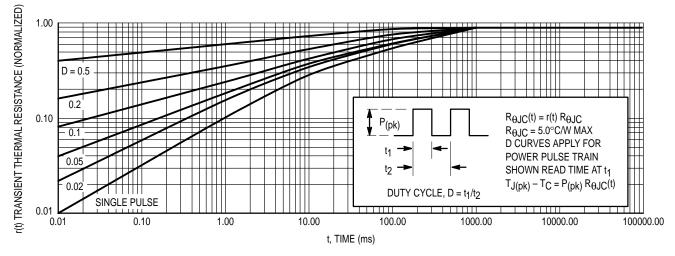
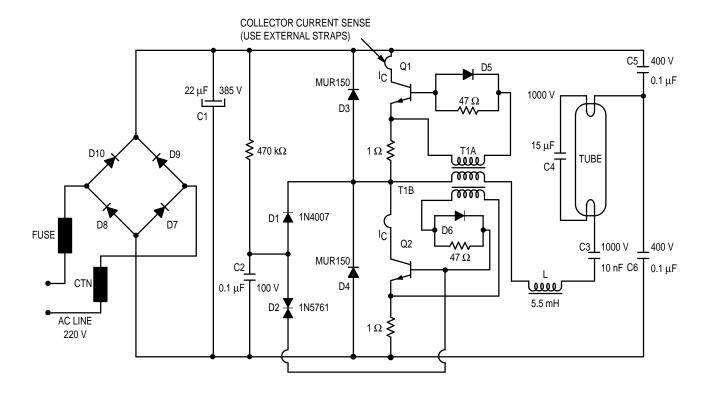



Figure 21. Typical Thermal Response (Z_HJC(t)) for BUL45F

The BUL45/BUL45F Bipolar Power Transistors were specially designed for use in electronic lamp ballasts. A circuit designed by Motorola applications was built to

demonstrate how well these devices operate. The circuit and detailed component list are provided below.

Components Lists

Q1 = Q2 = BUL45 Transistor

D1 = 1N4007 Rectifier

D2 = 1N5761 Rectifier

D3 = D4 = MUR150 D5 = D6 = MUR105

D7 = D8 = D9 = D10 = 1N400

CTN = $47 \Omega @ 25^{\circ}C$

L = RM10 core, A1 = 400, B51 (LCC) 75 turns,

wire $\emptyset = 0.6 \text{ mm}$

T1 = FT10 toroid, T4A (LCC)

Primary: 4 turns

Secondaries: T1A: 4 turns T1B: 4 turns All resistors are 1/4 Watt, ±5%

 $R1 = 470 \text{ k}\Omega$

 $R2 = R3 = 47 \Omega$

R4 = R5 = 1 Ω (these resistors are optional, and

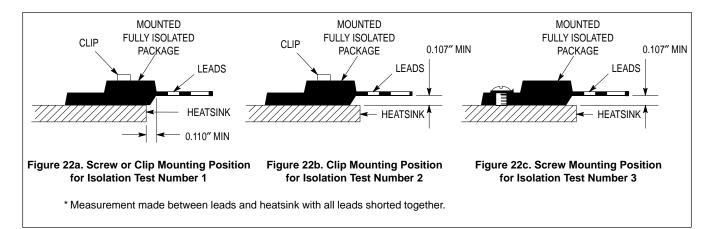
might be replaced by a short circuit)

 $C1 = 22 \mu F/385 V$

 $C2 = 0.1 \,\mu F$

C3 = 10 nF/1000 V

C4 = 15 nF/1000 V


 $C5 = C6 = 0.1 \,\mu\text{F}/400 \,\text{V}$

NOTES:

- 1. Since this design does not include the line input filter, it cannot be used "as-is" in a practical industrial circuit.
- 2. The windings are given for a 55 Watt load. For proper operation they must be re-calculated with any other loads.

Figure 22. Application Example

TEST CONDITIONS FOR ISOLATION TESTS*

MOUNTING INFORMATION**

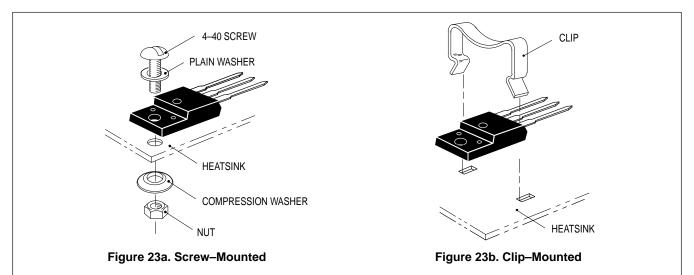
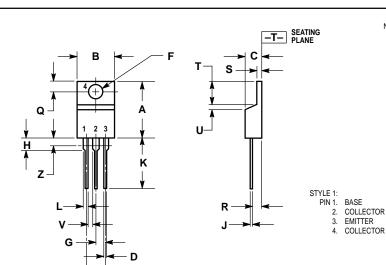


Figure 23. Typical Mounting Techniques for Isolated Package

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.


Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in \cdot lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

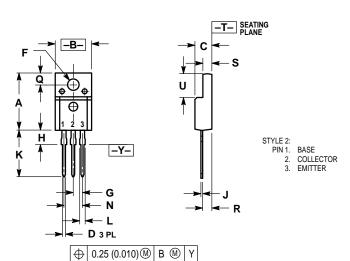
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in \cdot lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10 in \cdot lbs of mounting torque under any mounting conditions.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "A are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

^{**} For more information about mounting power semiconductors see Application Note AN1040.

PACKAGE DIMENSIONS

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.

 CONTROLLING DIMENSION: INCH.

 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN MAX		
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
C	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Z		0.080		2.04	

BUL45 CASE 221A-06 TO-220AB **ISSUE Y**

BUL45F **CASE 221D-02** (ISOLATED TO-220 TYPE) **ISSUE D**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.621	0.629	15.78	15.97	
В	0.394	0.402	10.01	10.21	
С	0.181	0.189	4.60	4.80	
D	0.026	0.034	0.67	0.86	
F	0.121	0.129	3.08	3.27	
G	0.100	BSC	2.54 BSC		
Н	0.123	0.129	3.13	3.27	
7	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.14	1.52	
N	0.200	BSC	5.08 BSC		
Q	0.126	0.134	3.21	3.40	
R	0.107	0.111	2.72	2.81	
S	0.096	0.104	2.44	2.64	
U	0.259	0.267	6.58	6.78	

How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298