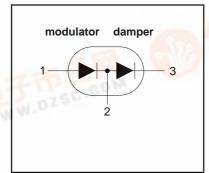
Philips Semiconductors

Product specification


Damper-Modulator fast, high-voltage

BYM357DX

FEATURES

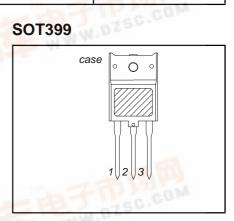
- Low forward volt drop
- Fast switchingSoft recovery characteristic
- High thermal cycling performance
- Isolated mounting tab

SYMBOL

QUICK REFERENCE DATA

	DAMPER	MODULATOR
i	V _R =1500 V	V _R =600 V
	V _F ≤ 1.3 V	V _F ≤ 1.03 V
	I _{F(RMS)} =15.7 A	$I_{F(peak)} = 7 A$
	I _{FSM} ≤ 60 A	$I_{FSM} \le 70 \text{ A}$
	$t_{rr} \leq 300 \text{ ns}$	t _{rr} ≤ 60 ns

GENERAL DESCRIPTION


Combined damper and modulator diodes in an isolated plastic envelope for horizontal deflection in colour TV and PC monitors.
The BYM357DX contains diodes with performance characteristics designed specifically for applications from 16kHz to 70kHz

The BYM357DX series is supplied in the conventional leaded SOT399 package.

PINNING

DESCRIPTION
modulator anode.
common anode/cathode
damper cathode

SOT399

LIMITING VALUES

 $T_i = 25$ °C unless otherwise stated

	"- IT 12	Man	DAM	IPER	MODU	LATOR	
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	UNIT
V _{RSM}	Peak non-repetitive reverse voltage.		-	1500	-	600	٧
V _{RRM}	Peak repetitive reverse voltage		-	1500	-	600	V
V_{RWM}	Crest working reverse voltage		-	1300	7-77	600	V
I _{F(peak)}	Peak forward current	31-70kHz monitor	1.50	7	W.DZ	7	А
I _{F(RMS)}	RMS forward current	sinusoidal;a=1.57	3.1-	15.7	-	14.1	Α
I _{FSM}	Peak non-repetitive forward current	t = 10ms t = 8.3 ms sinusoidal; with reapplied V _{RWM(MAX)}	- -	60 66	-	70 77	A A
T _{stg}	Storage temperature Operating junction temperature		-40 -	150 150	-40 -	150 150	ů Ĉ

BYM357DX

ISOLATION LIMITING VALUE & CHARACTERISTIC

T_{hs} = 25 °C unless otherwise specified

115	113					
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	Repetitive peak voltage from all three terminals to external heatsink	R.H. ≤ 65 % ; clean and dustfree	-	-	2500	V
C _{isol}	Capacitance from T2 to external heatsink	f = 1 MHz	-	22	-	pF

THERMAL RESISTANCES

			DAM	IPER	MODU	LATOR	
SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	TYP.	MAX.	UNIT
R _{th j-hs}	Thermal resistance junction to heatsink	with heatsink compound	-	3.5	-	4	K/W
R _{th j-a}	Thermal resistance junction to ambient	in free air.	32	-	32	-	K/W

STATIC CHARACTERISTICS OF DAMPER

 $T_i = 25$ °C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	TYP	MAX.	UNIT
V _F	Forward voltage Reverse current	$I_F = 6.5 \text{ A}$ $I_F = 6.5 \text{ A}$; $T_j = 125^{\circ}\text{C}$ $V_R = V_{RWM}$ $V_R = V_{RWM}$ $T_i = 100^{\circ}\text{C}$	1.1 1.05 10 50	1.45 1.3 250 500	V V μΑ μΑ

STATIC CHARACTERISTICS OF MODULATOR

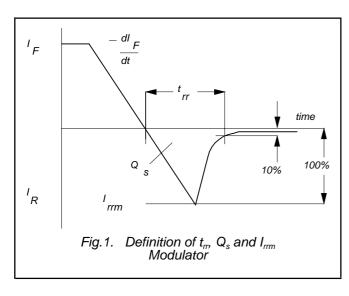
T_i = 25 °C unless otherwise stated

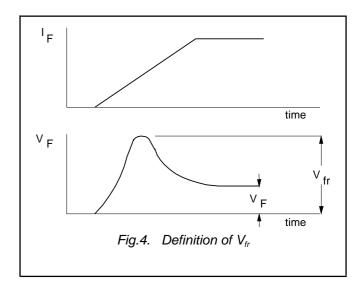
SYMBOL	PARAMETER	CONDITIONS	TYP	MAX.	UNIT
V _F	Forward voltage	$I_F = 8 \text{ A}$ $I_F = 8 \text{ A}$; $T_j = 125^{\circ}\text{C}$ $I_F = 20 \text{ A}$	1.05 0.9 1.3	1.25 1.03 1.45	V V V
I _R	Reverse current.	$V_{R} = V_{RWM}$ $V_{R} = V_{RWM}$ $T_{i} = 100 \text{ C}$	10 100	50 350	μA μA

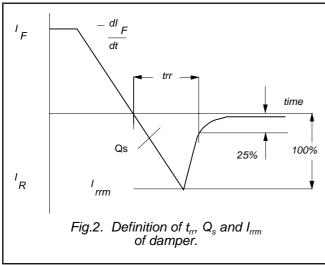
BYM357DX

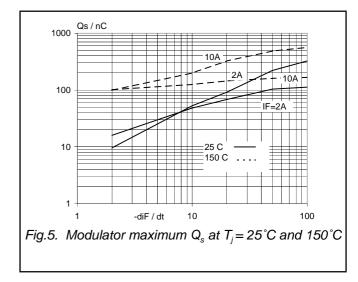
ELECTRICAL CHARACTERISTICS OF DAMPER

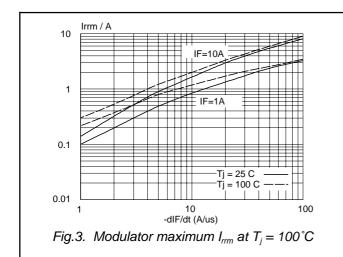
T_i = 25 °C unless otherwise stated

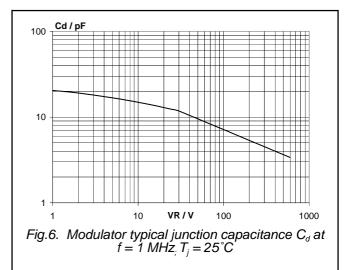

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
t _{rr}	Reverse recovery time	$I_F = 1 \text{ A}; V_R \ge 30 \text{ V};$	200	300	ns
Q _s V _{fr}	Reverse recovery charge Peak forward recovery voltage	$-dI_{F}/dt = 50 \text{ A/}\mu\text{s}$ 2 A,30 V,20 A/ μ s $I_{F} = 6.5 \text{ A};$ $dI_{F}/dt = 50 \text{ A/}\mu\text{s}$	1.2 27	2.0	μC V


ELECTRICAL CHARACTERISTICS OF MODULATOR


 $T_i = 25$ °C unless otherwise stated


SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
t _{rr}	Reverse recovery time	$I_F = 1 \text{ A}; V_R \ge 30 \text{ V};$ - $dI_F/dt = 100 \text{ A}/\mu\text{s}$	35	60	ns
I _{rrm}	Peak reverse recovery current	$I_F = 10 \text{ A to V}_R \ge 30 \text{ V};$ $dI_F/dt = 50 \text{ A/}\mu\text{s}; T_i = 100^{\circ}\text{C}$	3.0	5.5	Α
$egin{array}{c} Q_s \ V_{fr} \end{array}$	Reverse recovery charge Peak forward recovery voltage	$2 \text{ A},30 \text{ V},20 \text{ A}/\mu\text{s}$ $I_F = 10 \text{ A};$ $dI_F/dt = 10 \text{ A}/\mu\text{s}$	40 3.2	70 -	nC V


BYM357DX



BYM357DX

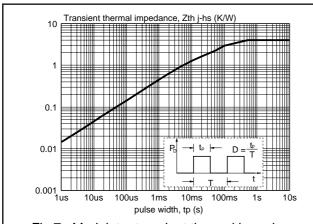
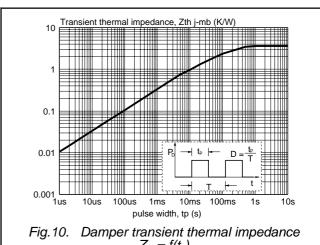



Fig.7. Modulator transient thermal impedance $Z_{th} = f(t_p)$

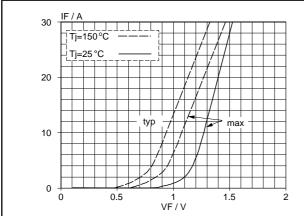


Fig.8. Modulator typical and maximum forward characteristic; $I_F = f(V_F)$; parameter T_i

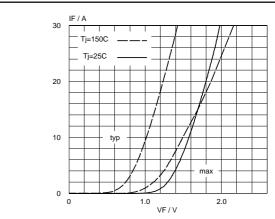


Fig.11. Damper forward characteristic $I_F = f(V_F)$; parameter T_i

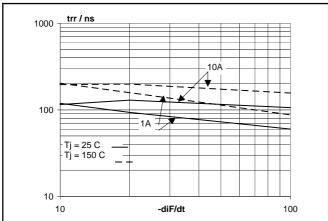
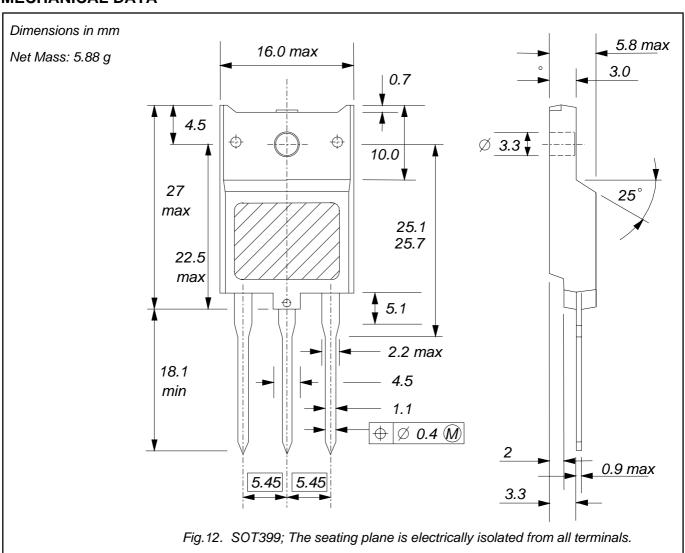



Fig.9. Modulator maximum t_{rr} measured to 25% of I_{rm} ; $T_j = 25^{\circ}\text{C}$ and 150 $^{\circ}\text{C}$

BYM357DX

MECHANICAL DATA

- Refer to mounting instructions for F-pack envelopes.
 Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

Damper-Modulator fast, high-voltage

BYM357DX

DEFINITIONS

Data sheet status						
Objective specification	This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.					
Product specification	This data sheet contains final product specifications.					
Limiting values						

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 2000

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.