BYT03－400

FAST RECOVERY RECTIFIER DIODE

MAJOR PRODUCTS CHARACTERISTICS

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	3 A
$\mathrm{~V}_{\mathrm{RRM}}$	400 V
t_{rr}	25 ns
$\mathrm{~V}_{\mathrm{F}}(\max)$	1.4 V

FEATURES

－VERY LOW REVERSE RECOVERY TIME
－VERY LOW SWITCHING LOSSES
－LOW NOISE TURN－OFF SWITCHING

DESCRIPTION

Free wheeling diode in converters and motor con－ trol circuits．
Rectifiers in S．M．P．S．

ABSOLUTE RATINGS（limiting values）

Symbol	Parameter		Value	Unit
VRRM	Repetitive peak reverse voltage		400	V
VRSM	Non repetitive peak reverse voltage		400	V
Ifrm	Repetive peak forward current	tp $10 \mu \mathrm{~s}$	60	A
$\mathrm{IF}(\mathrm{AV})$	Average forward current＊	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=65^{\circ} \mathrm{C} \\ & \delta=0.5 \end{aligned}$	3	A
IFSM	Surge non repetitive forward current	$\begin{aligned} & \mathrm{tp}_{\mathrm{p}}=10 \mathrm{~ms} \\ & \text { Sinusoidal } \end{aligned}$	60	A
P	Power dissipation＊	$\mathrm{Ta}=65^{\circ} \mathrm{C}$	4.2	W
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-40 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum operating junction temperature		＋ 150	

＊On infinite heatsink with 10 mm lead lengh．

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
R $_{\text {th }(\mathrm{j}-\mathrm{a})}$	Junction-ambient*	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

* On infinite heatsink with 10 mm lead lengh.

STATIC ELECTRICAL CHARACTERISTICS

Synbol	Test Conditions		Min.	Typ.	Max.	Unit
IR	$\mathrm{T}_{\mathrm{j}}=25 \mathrm{C}$	$V_{R}=V_{\text {RRM }}$			20	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{j}}=100 \mathrm{C}$				0.5	mA
V_{F}	$\mathrm{T}_{\mathrm{j}}=25 \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~A}$			1.5	V
	$\mathrm{T}_{\mathrm{j}}=100 \mathrm{C}$				1.4	

RECOVERY CHARACTERISTICS

Symbol	Test Conditions				Min.	Typ.	Max.	Unit
$t_{\text {rr }}$	$\mathrm{T}_{\mathrm{j}}=25 \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad \mathrm{diF} / \mathrm{dt}=-15 \mathrm{~A} / \mu \mathrm{s} \quad \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$					55	ns
		$\mathrm{IF}=0.5 \mathrm{~A}$	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~A}$	$\mathrm{I}_{\mathrm{rr}}=0.25 \mathrm{~A}$			25	

TURN-OFF SWITCHING CHARACTERISTICS - Without series inductance

Symbol	Test Conditions			Min.	Typ.	Max.	Unit
tIRM	$\mathrm{diF} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s}$	$\begin{array}{ll} V_{C C}=200 V & I_{F}=3 A \\ L_{p} \leq 0.05 \mu H & T_{j}=100^{\circ} \mathrm{C} \end{array}$			35	50	ns
IRM	$\mathrm{diF} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s}$				1.5	2	A

To evaluate the conduction losse use the following equations:
$\mathrm{V}_{\mathrm{F}}=1.1+0.050 \mathrm{I}_{\mathrm{F}} \quad \mathrm{P}=1.1 \times \mathrm{IF}(\mathrm{AV})+0.050 \mathrm{IF}^{2}$ (RMS)

Fig. 1: Maximum average power dissipation versus average forward current.

Fig. 3 : Thermal resistance versus lead length.

Fig. 4: Transient thermal impedance junction ambient for mounting $\mathrm{n}^{\circ} 2$ versus pulse duration ($\mathrm{L}=10 \mathrm{~mm}$).

Fig. 2: Average forward current versus ambient temperature.

$$
\begin{array}{ll}
\text { Mounting noi } & \text { Mounting no2. } \\
\text { INFINITE HEATSINK } & \text { PRINTED CIRCUIT }
\end{array}
$$

Fig. 5: Peak forward current versus peak forward voltage drop (maximum values).

Fig. 7: Recovery time versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig. 9: Peak reverse current versus dl//dt.

Fig. 11: Dynamic parameters versus junction temperature.

Fig. 8: Peak forward voltage versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig. 10: Recovery charge versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ (typical values).

Fig. 12: Non repetitive surge peak current versus number of cycle.

PACKAGE MECHANICAL DATA

DO-201AD (Plastic)

REF.	DIMENSIONS				NOTES
	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
A		9.50		0.374	1 - The lead diameter $\varnothing \mathrm{D}$ is not controlled over zone E
B	25.40		1.000		
$\varnothing \mathrm{C}$		5.30		0.209	placed with its leads bent at right angles is 0.59 " $(15 \mathrm{~mm})$
$\varnothing \mathrm{D}$		1.30		0.051	
E		1.25		0.049	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

