

BYT03-400

FAST RECOVERY RECTIFIER DIODE

MAJOR PRODUCTS CHARACTERISTICS

I F(AV)	3 A
V _{RRM}	400 V
t _{rr}	25 ns
V _F (max)	1.4 V

FEATURES

- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING

DESCRIPTION

Free wheeling diode in converters and motor control circuits.

Rectifiers in S.M.P.S.

Symbol	Parameter	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage	192 TA	400	V
V _{RSM}	Non repetitive peak reverse voltage	All De	400	V
I _{FRM}	Repetive peak forward current	60	Α	
I _{F (AV)}	Average forward current*	3	Α	
I _{FSM}	Surge non repetitive forward current	60	A	
Р	Power dissipation *	Ta = 65°C	4.2	W
T _{stg}	Storage temperature range	- 40 to + 150	°C	
Tj	Maximum operating junction temperatu	re	+ 150	

^{*} On infinite heatsink with 10mm lead lengh.

BYT03-400

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
R _{th (j - a)}	Junction-ambient*	20	°C/W

^{*} On infinite heatsink with 10mm lead lengh.

STATIC ELECTRICAL CHARACTERISTICS

Synbol	Test	Min.	Тур.	Max.	Unit	
I _R	T _j = 25C	$V_R = V_{RRM}$			20	μА
	T _j = 100C				0.5	mA
V _F	T _j = 25C	I _F = 3A			1.5	V
	T _j = 100C				1.4	

RECOVERY CHARACTERISTICS

Symbol	Test Conditions			Тур.	Max.	Unit
t _{rr}	$T_j = 25C$	$I_F = 1A$ $di_F/dt = -15A/\mu s$ $V_R = 30V$			55	ns
		$I_F = 0.5A$ $I_R = 1 A$ $I_{rr} = 0.25A$			25	

TURN-OFF SWITCHING CHARACTERISTICS - Without series inductance

Symbol	Test	Min.	Тур.	Max.	Unit	
t _{IRM}	di _F /dt = - 50A/μs	$V_{CC} = 200 \text{ V}$ $I_F = 3A$ $I_D \le 0.05 \mu H$ $I_I = 100 ^{\circ} C$		35	50	ns
I _{RM}	di _F /dt = -50A/μs	$L_p \le 0.05 \mu H$ $T_j = 100 ^{\circ} C$		1.5	2	Α

To evaluate the conduction losse use the following equations : $V_F = 1.1 + 0.050~I_F$ $P = 1.1~x~I_{F(AV)} + 0.050~I_F^2_{(RMS)}$

2/5

Fig. 1: Maximum average power dissipation versus average forward current.

Fig.3: Thermal resistance versus lead length.

Fig. 4: Transient thermal impedance junction ambient for mounting n° 2 versus pulse duration (L = 10 mm).

Fig. 2: Average forward current versus ambient temperature.

Fig. 5: Peak forward current versus peak forward voltage drop (maximum values).

Fig. 7: Recovery time versus dI_F/dt.

Fig. 9: Peak reverse current versus dI_F/dt .

Fig. 11: Dynamic parameters versus junction temperature.

Fig. 8: Peak forward voltage versus dl_F/dt.

Fig. 10: Recovery charge versus dl_F/dt (typical values).

Fig. 12: Non repetitive surge peak current versus number of cycle.

PACKAGE MECHANICAL DATA

DO-201AD (Plastic)

		DIMEN	SIONS		
REF.	Millimeters Inches		hes	NOTES	
	Min.	Max.	Min.	Max.	
Α		9.50		0.374	1 - The lead diameter Ø D is not controlled over zone E
В	25.40		1.000		2 - The minimum axial length within which the device may be
ØC		5.30		0.209	placed with its leads bent at right angles is 0.59"(15 mm)
Ø D		1.30		0.051	
Е		1.25		0.049	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-

proval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com