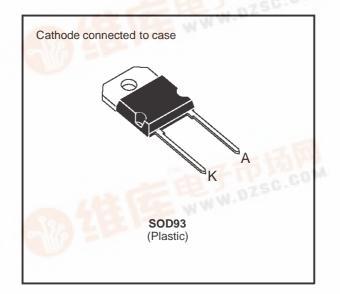
查询BYT30P-400供应商

捷多邦,专业PCB打样工厂,24小时加急出货


BYT 30P-400

FAST RECOVERY RECTIFIER DIODES

VERY LOW REVERSE RECOVERY TIME

DZSC.COM

- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING WWW.DZSC.COM

SUITABLE APPLICATIONS

- FREE WHEELING DIODE IN CONVERTERS AND MOTOR CONTROL CIRCUITS WWW.DZSC.COM
- RECTIFIER IN S.M.P.S.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter		Value	Unit	
I _{FRM}	$\label{eq:response} \mbox{Repetive Peak Forward Current} \qquad t_p \leq 10 \mu s$		500	AO	
I _{F (RMS)}	RMS Forward Current	rd Current		Α	
IF (AV)	Average Forward Current	$T_{c} = 100^{\circ}C$ $\delta = 0.5$	30	A	
I _{FSM}	Surge non Repetitive Forward Current	t _p = 10ms Sinusoidal	350	A	
Р	Power Dissipation	T _c = 100°C		W	
T _{stg} Tj	Storage and Junction Temperature Range	- 40 to + 150 - 40 to + 150	°C		

Symbol	Parameter	Value Value	Unit	
V _{RRM}	Repetitive Peak Reverse Voltage	400	V	
V _{RSM}	Non Repetitive Peak Reverse Voltage	440	V	

V _{RSM}	Non Repetitive Peak Reverse Voltage	440	V					
THERMAL RESISTANCE								
Symbol Parameter Value Un								
R _{th (j - c)}	Junction-case	1	°C/W					

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

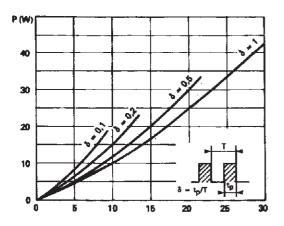
Synbol	Test Conditions			Тур.	Max.	Unit
I _R	$T_j = 25^{\circ}C$	$V_{R} = V_{RRM}$			35	μΑ
	$T_j = 100^{\circ}C$				6	mA
V _F	$T_j = 25^{\circ}C$	I _F = 30A			1.5	V
	$T_j = 100^{\circ}C$				1.4	

RECOVERY CHARACTERISTICS

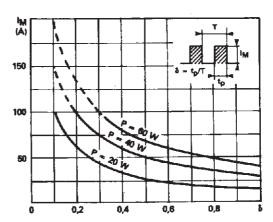
Symbol		Test Conditions				Тур.	Max.	Unit
t _{rr}	$T_j = 25^{\circ}C$	I _F = 1A	di _F /dt = - 15A/µs	$V_R = 30V$			100	ns
		I _F = 0.5A	$I_R = 1A$	I _{rr} = 0.25A			50	

TURN-OFF SWITCHING CHARACTERISTICS (Without Series Inductance)

Symbol	Test Conditions			Тур.	Max.	Unit
t _{IRM}	di _F /dt = - 120A/µs	$V_{CC} = 200 V$ $I_{F} = 30 A$			75	ns
	di _F /dt = - 240A/µs	L _p ≤0.05µH T _j = 100°C See figure 11		50		
I _{RM}	di _F /dt = -120A/µs				9	А
	di _F /dt = - 240A/µs			12		


TURN-OFF OVERVOLTAGE COEFFICIENT (With Series Inductance)

Symbol	Test Conditions			Min.	Тур.	Max.	Unit
$C = \frac{V_{RP}}{V_{CC}}$	T _j = 100°C di _F /dt = - 30A/μs	V_{CC} = 60V L _p = 1µH	$I_F = I_{F (AV)}$ See figure 12		3.3		


To evaluate the conduction losses use the following equations:

 $V_F = 1.1 + 0.0095 I_F$ $P = 1.1 \times I_{F(AV)} + 0.0095 I_F^2(RMS)$

Figure 1. Low frequency power losses versus average current

Figure 2. Peak current versus form factor

<u>ک</u>

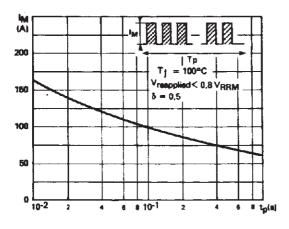


Figure 3. Non repetitive peak surge current versus overload duration

Figure 5. Voltage drop versus forward current

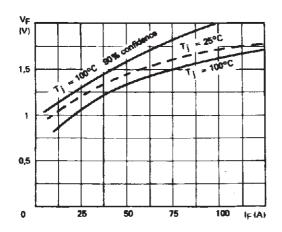
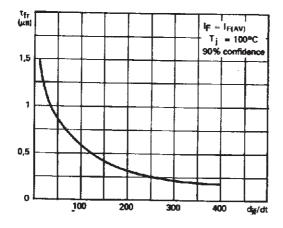



Figure 7. Recovery time versus diF/dt-

57

Figure 4. Thermal impedance versus pulse width

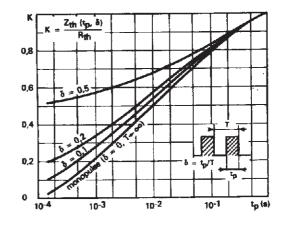


Figure 6. Recovery charge versus di_F/d_{t-}

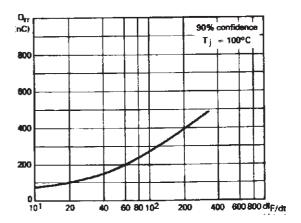
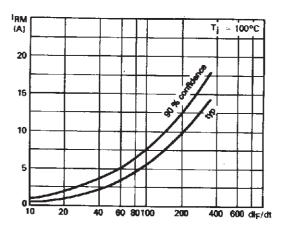



Figure 8. Peak reverse current versus diF/dt-

BYT 30P-400

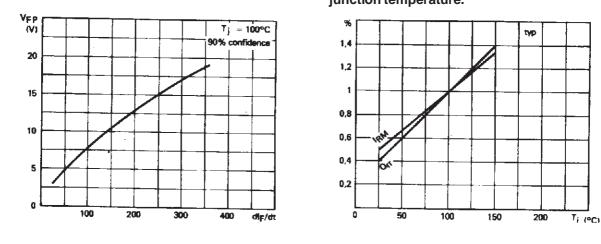
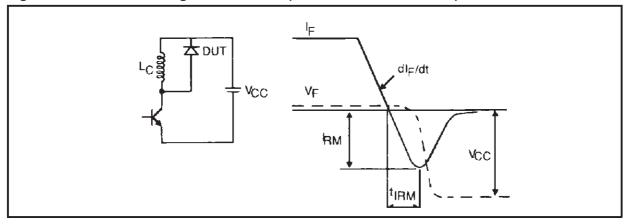
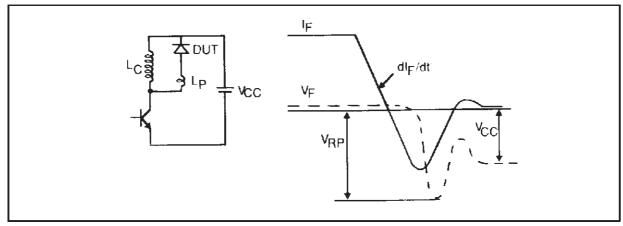
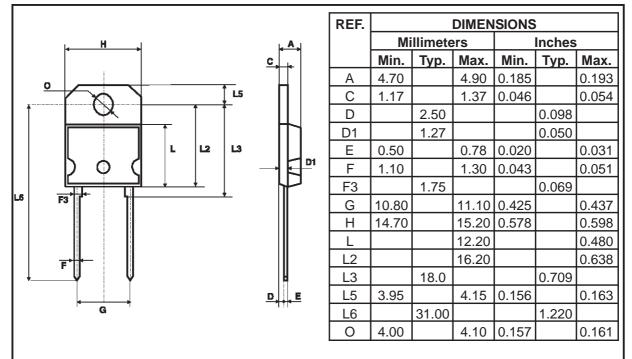




Figure 9. Peak forward voltage versus diF/dt-

Figure 11. Turn-off switching characteristics (without series inductance).



57

PACKAGE MECHANICAL DATA :

SOD93 Plastic

- Marking: type number
- Cooling method: by conduction (method C)
- Weight: 3.79g
- Recommended torque value: 80cm. N
- Maximum torque value: 100cm. N

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

