
BYW52...BYW56

Vishay Telefunken

Silicon Mesa Rectifiers

Features

- Controlled avalanche characteristics
- Glass passivated junction
- Hermetically sealed package
- Low reverse current
- High surge current loading
- Electrically equivalent diodes:
 BYW52 1N5059
 BYW53 1N5060
 BYW54 1N5061
 BYW55 1N5062

Applications

Rectifier, general purpose

Absolute Maximum Ratings

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Туре	Symbol	Value	Unit
Reverse voltage		BYW52	$V_R = V_{RRM}$	200	V
=Repetitive peak reverse voltage		BYW53	V _R =V _{RRM}	400	V
		BYW54	$V_R = V_{RRM}$	600	V
		BYW55	$V_R = V_{RRM}$	800	V
	300	BYW56	V _R =V _{RRM}	1000	V
Peak forward surge current	t _p =10ms, half sinewave		I _{FSM}	50	Α
Repetitive peak forward current	store.		I _{FRM}	12	Α
Average forward current	φ=180°		I _{FAV}	2	Α
Pulse avalanche peak power	t _p =20μs half sinus wave, T _i =175°C		P _R	1000	W
Pulse energy in avalanche mode, non repetitive (inductive load switch off)	I _{(BR)R} =1A, T _j =175°C		E _R	20	mJ
i ² * t–rating			i ² *t	8	A ² *s
Junction and storage temperature range	300		T _j =T _{stg}	-55 + 175	°C

Maximum Thermal Resistance

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Junction ambient	I=10mm, T _L =constant	R _{thJA}	45	K/W
1/(6)	on PC board with spacing 25mm	R_{thJA}	100	K/W

BYW52...BYW56

Vishay Telefunken

Electrical Characteristics

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Forward voltage	I _F =1A		V _F		0.9	1.0	V
Reverse current	$V_R = V_{RRM}$		I _R		0.1	1	μΑ
	V _R =V _{RRM} , T _j =100°C		I _R		5	10	μΑ
Breakdown voltage	$I_R=100\mu A$, $t_p/T=0.01$, $t_p=0.3$ ms		V _(BR)			1600	V
Diode capacitance	V _R =0, f=0.47MHz		C _D		50		рF
Reverse recovery time	I _F =0.5A, I _R =1A, i _R =0.25A		t _{rr}			4	μs
	I _F =1A, di/dt=5A/μs, V _R =50V		t _{rr}			4	μs
Reverse recovery charge	I _F =1A, di/dt=5A/μs		Q _{rr}			200	nC

Characteristics $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

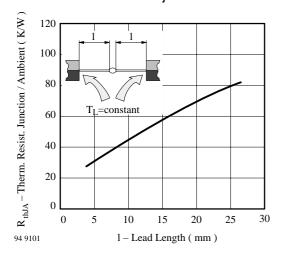


Figure 1. Typ. Thermal Resistance vs. Lead Length

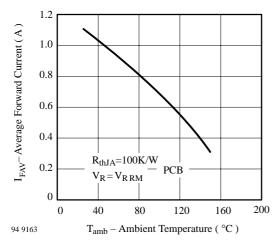


Figure 2. Max. Average Forward Current vs. **Ambient Temperature**

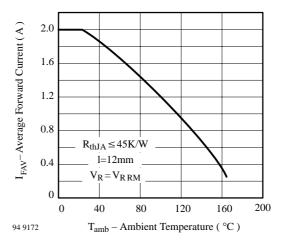


Figure 3. Max. Average Forward Current vs. Ambient Temperature

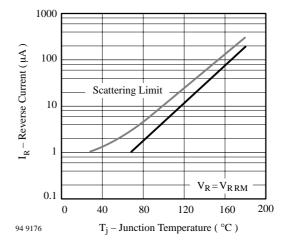


Figure 4. Reverse Current vs. Junction Temperature

Vishay Telefunken

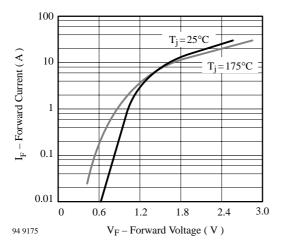


Figure 5. Typ. Forward Current vs. Forward Voltage

Figure 6. Typ. Diode Capacitance vs. Reverse Voltage

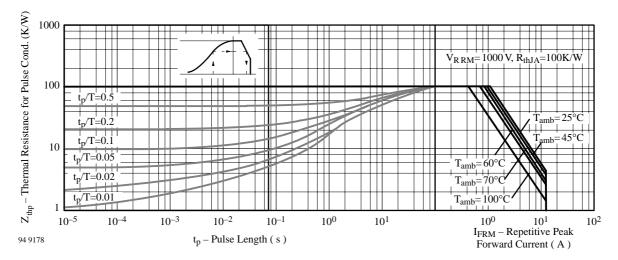
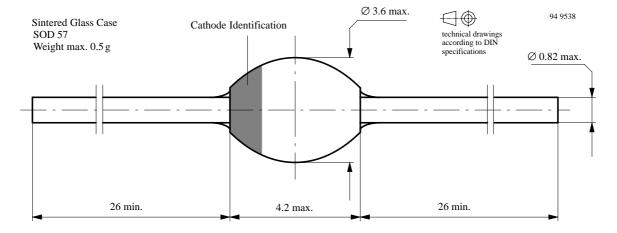



Figure 7. Thermal Response

Dimensions in mm

BYW52...BYW56

Vishay Telefunken

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
 - with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0) 7131 67 2831, Fax number: 49 (0) 7131 67 2423