查询TC7MH574FK供应商

TOSHIBA

TC7MH574FK

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7MH574FK

Octal D-Type Flip-Flop with 3-State Output

The TC7MH574FK is an advanced high speed CMOS octal flip-flop with 3-state output fabricated with silicon gate C²MOS technology.

It achieves the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

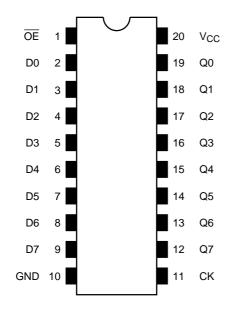
This 8 bit D-type flip-flop is controlled by a clock input (CK) and an output enable input (OE).

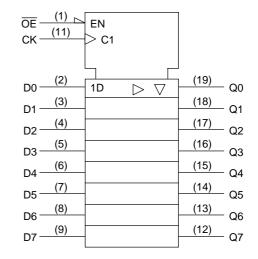
When the OE input is high, the eight outputs are in a high impedance state.

An input protection circuit ensures that 0 to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- High speed: $f_{max} = 180 \text{ MHz}$ (typ.) (V_{CC} = 5 V) •
- Low power dissipation: $I_{CC} = 4 \mu A (max) (Ta = 25^{\circ}C)$ •
- High noise immunity: VNIH = VNIL = 28% VCC (min) •
- Power down protection is provided on all inputs. •
- Balanced propagation delays: $t_{pLH} \approx t_{pHL}$ •
- Wide operating voltage range: VCC (opr) = $2 \sim 5.5$ V
- Low noise: $V_{OLP} = 1.0 V (max)$
- Pin and function compatible with 74ALS574


Weight: 0.03 g (typ.)

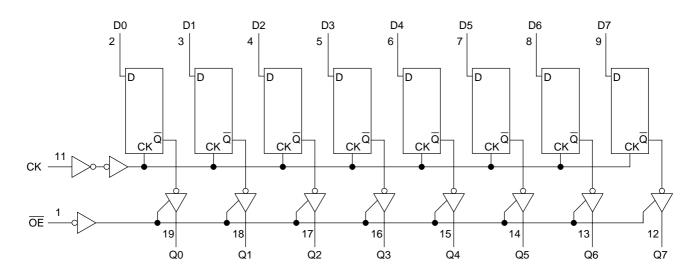

TC7MH574FK

TOSHIBA

Pin Assignment (top view)

IEC Logic Symbol

Truth Table


	Outputs				
ŌĒ	СК	Outputs			
Н	Х	Х	Z		
L	┍╼┙	Х	Q _n		
L		L	L		
L		Н	Н		

X: Don't care

Z: High impedance

Q_n: No change

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7.0	V
DC input voltage	V _{IN}	-0.5~7.0	V
DC output voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input diode current	I _{IK}	-20	mA
Output diode current	I _{OK}	±20	mA
DC output current	IOUT	±25	mA
DC V _{CC} /ground current	ICC	±75	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	-65~150	°C

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2.0~5.5	V
Input voltage	V _{IN}	0~5.5	V
Output voltage	V _{OUT}	0~V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	0~100 (V_{CC} = 3.3 \pm 0.3 V)	ns/V
input lise and fair time	uvuv	0~20 (V _{CC} = 5 \pm 0.5 V)	113/ V

<u>TOSHIBA</u>

Electrical Characteristics

DC Characteristics

Characteristics		Symbol Test Condi		Condition			Ta = 25°C			Ta = -40~85°C		
Charac	ciensilos	Symbol			$V_{CC}(V)$	Min	Тур.	Max	Min	Max	Unit	
				2.0	1.50			1.50	_			
Input voltage	High level	VIH	V _{IH} —		3.0~5.5	$\begin{array}{c} V_{CC} \\ \times \ 0.7 \end{array}$	_		$\begin{array}{c} V_{CC} \\ \times \ 0.7 \end{array}$	_	V	
mput voltage					2.0			0.50		0.50	v	
	Low level	VIL			3.0~5.5		_	$V_{CC} \times 0.3$	_	$\begin{array}{c} V_{CC} \\ \times \ 0.3 \end{array}$		
				I _{OH} = -50 μA	2.0	1.9	2.0	_	1.9	_		
		V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}		3.0	2.9	3.0	_	2.9	_		
	High level				4.5	4.4	4.5		4.4	_		
Output				$I_{OH} = -4 \text{ mA}$	3.0	2.58			2.48	_		
				$I_{OH} = -8 \text{ mA}$	4.5	3.94			3.80	_	V	
voltage				I _{OL} = 50 μA	2.0		0	0.1	_	0.1		
					3.0		0	0.1	_	0.1		
	Low level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}		4.5		0	0.1	_	0.1		
				$I_{OL} = 4 \text{ mA}$	3.0			0.36	_	0.44		
				$I_{OL} = 8 \text{ mA}$	4.5		_	0.36	_	0.44		
3-state output	off-state current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$		5.5	—		±0.25	_	±2.50	μΑ	
Input leakage	current	I _{IN}	$V_{IN} = 5.5 \text{ V or GND}$		0~5.5	_	—	±0.1	—	±1.0	μA	
Quiescent sup	ply current	ICC	$V_{IN} = V_{CC} \text{ or } GND$		5.5			4.0	_	40.0	μA	

Timing Requirements (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C		Ta = -40~85°C	Unit
	Symbol	Test Condition	V _{CC} (V)	Тур.	Limit	Limit	Unit
Minimum pulse width	t _{w (H)}		$\textbf{3.3}\pm\textbf{0.3}$	_	5.0	5.0	ns
(CK)	t _{w (L)}		5.0 ± 0.5	_	5.0	5.0	115
Minimum set-up time	t _s	_	$\textbf{3.3}\pm\textbf{0.3}$	_	3.5	3.5	ns
			5.0 ± 0.5	_	3.5	3.5	115
Minimum hold time	t _h		$\textbf{3.3}\pm\textbf{0.3}$	—	1.5	1.5	ns
			5.0 ± 0.5	—	1.5	1.5	115

AC Characteristics (Input: t_r = t_f = 3 ns)

Characteristics	Symbol Test Condition				Ta = 25°C			Ta = -40~85°C		Unit
Characteristics	Symbol	Test Condition	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Unit
			3.3 ± 0.3	15		8.5	13.2	1.0	15.5	ns
Propagation delay time	t _{pLH}		5.5 ± 0.5	50		11.0	16.7	1.0	19.0	
(CK-Q)	t _{pHL}		5.0 ± 0.5	15	_	5.6	8.6	1.0	10.0	115
			5.0 ± 0.5	50	_	7.1	10.6	1.0	12.0	
			3.3 ± 0.3	15	_	8.2	12.8	1.0	15.0	
2 state output onable time	t _{pZL}	$R_L = 1 \ k\Omega$	5.5 ± 0.5	50	_	10.7	16.3	1.0	18.5	ns
3-state output enable time	^t pZH		5.0 ± 0.5	15	_	5.9	9.0	1.0	10.5	
				50	_	7.4	11.0	1.0	12.5	
3-state output disable time	t _{pLZ}	$R_L = 1 \ k\Omega$	$\textbf{3.3}\pm\textbf{0.3}$	50		11.0	15.0	1.0	17.0	ns
S-State Output disable time	t _{pHZ}		5.0 ± 0.5	50	_	7.1	10.1	1.0	11.5	
	f _{max}	_	3.3±0.3	15	80	125	_	65	_	MHz
Maximum clock frequency				50	50	75	_	45	_	
			5.0 ± 0.5	15	130	180	_	110	_	
				50	85	115	_	75	_	
Output to output skew	t _{osLH}	(Note1)	$\textbf{3.3}\pm\textbf{0.3}$	50	_	_	1.5	_	1.5	ns
	t _{osHL}	(Note I)	5.0 ± 0.5	50			1.0	_	1.0	
Input capacitance	C _{IN}					4	10	—	10	pF
Output capacitance	C _{OUT}	_				6				pF
Power dissipation capacitance	C _{PD}			(Note2)	_	28		_	—	pF

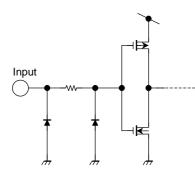
Note1: This parameter is guaranteed by design.

 $t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|$

Note2: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

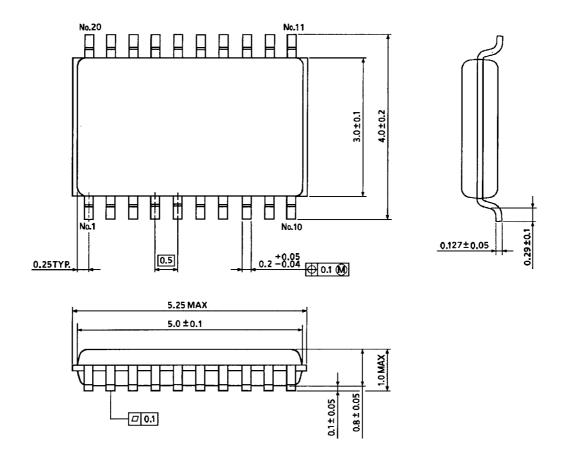
 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 (per F/F)$


And the total CPD when n pcs of latch operate can be gained by the following equation:

 C_{PD} (total) = 20 + 8 · n

Noise Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition	_	Ta = 25°C		Unit
Characteristics	Symbol	rest condition	$V_{CC}(V)$	Тур.	Limit	Unit
Quiet output maximum dynamic V_{OL}	V _{OLP}	C _L = 50 pF	5.0	0.8	1.0	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$C_L = 50 \text{ pF}$	5.0	-0.8	-1.0	V
Minimum high level dynamic input voltage V_{IH}	VIHD	C _L = 50 pF	5.0	_	3.5	V
Maximum low level dynamic input voltage V_{IL}	V _{ILD}	C _L = 50 pF	5.0		1.5	V


Input Equivalent Circuit

Package Dimensions

VSSOP20-P-0030-0.50

Unit : mm

Weight: 0.03 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.