TOSHIBA TC7MZ540FK TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC # TC7MZ540FK # LOW VOLTAGE OCTAL BUS BUFFER (INVERTED) WITH 5 V TOLERANT INPUTS AND OUTPUTS The TC7MZ540 is a high parformance CMOS OCTAL BUS BUFFER. Designed for use in 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation. The device is designed for low-voltage (3.3 V) V_{CC} applications, but it could be used to interface to 5 V supply environment for both inputs and outputs. The TC7MZ540 is an inverting 3-state buffer having two active-low output enables. When either $\overline{OE}1$ or $\overline{OE}2$ are high, the terminal outputs are in the high-impedance state. This device is designed to be used with 3-state All inputs are equipped with protection circuits against static discharge. Weight: 0.03 g (typ) #### **Features** Low voltage operation : $V_{CC} = 2.0 \sim 3.6 \text{ V}$ High speed operation : $t_{pd} = 6.5 \text{ ns (max)}$ $(\dot{V}_{CC} = 3.0 \sim 3.6 \text{ V})$ $|I_{OH}|/I_{OL} = 24 \, \text{mA} \, (\text{min})$ Output current $(V_{CC} = 3.0 \text{ V})$ Latch-up performance ± 500 mA memory address drivers, etc. Available in VSSOP (US20) Power down protection is provided on all inputs and outputs. Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 540 type. - TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The products described in this document are subject to the foreign exchange and foreign trade laws. - The products described in this document are subject to the foreign exchange and foreign trade laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice. TOSHIBA TC7MZ540FK #### Pin Assignment #### **Truth Table** | OUTPUTS | INPUTS | | | | | |---------|--------|-----|-----|--|--| | 0011013 | An | OE2 | OE1 | | | | Z | Х | Х | Н | | | | Z | Х | Н | Х | | | | L | Н | L | L | | | | Н | L | L | L | | | X : Don't Care Z : High Impedance #### **Maximum Ratings** | PARAMETER | SYMBOL | RATING | UNIT | |------------------------------------|------------------|-------------------------------------|------| | Supply Voltage Range | V _C C | -0.5~7.0 | V | | DC Input Voltage | VIN | -0.5~7.0 | V | | DC Output Valtage | \/-· | −0.5~7.0 (Note 1) | V | | DC Output Voltage | Vout | -0.5~V _{CC} + 0.5 (Note 2) | V | | Input Diode Current | ΙΚ | – 50 | mA | | Output Diode Current | lok | ± 50 (Note 3) | mΑ | | DC Output Current | IOUT | ± 50 | mΑ | | Power Dissipation | PD | 180 | mW | | DC V _{CC} /Ground Current | ICC / IGND | ± 100 | mA | | Storage Temperature | T _{stg} | - 65∼150 | °C | (Note 1): Output in Off-State (Note 2): High or Low State. IOUT absolute maximum rating must be observed. (Note 3): $V_{OUT} < GND$, $V_{OUT} > V_{CC}$ ## **IEC Logic Symbol** #### **Recommended Operating Conditions** | PARAMETER | SYMBOL | RATING | UNIT | |--------------------------|------------------|-----------------------------|--------| | Supply Valtage | V/ | 2.0~3.6 | V | | Supply Voltage | Vcc | 1.5~3.6 (Note 4) | \ \ | | Input Voltage | VIN | 0~5.5 | V | | Output Valtara | V _{OUT} | 0~5.5 (Note 5) | V | | Output Voltage | | 0~ V _{CC} (Note 6) | \ \ \ | | Output Current | la/la. | ± 24 (Note 7) | mA | | Output Current | IOH/IOL | ± 12 (Note 8) | IIIA | | Operating Temperature | T _{opr} | - 40∼85 | °C | | Input Rise And Fall Time | dt/dv | 0~10 (Note 9) | ns / V | (Note 4): Data Retention Only (Note 5): Output in Off-State (Note 6): High or Low State (Note 7): $V_{CC} = 3.0 \sim 3.6 \text{ V}$ (Note 8): $V_{CC} = 2.7 \sim 3.0 \text{ V}$ (Note 9): $V_{IN} = 0.8 \sim 2.0 \text{ V}$, $V_{CC} = 3.0 \text{ V}$ #### **Electrical Characteristics** DC characteristics (Ta = $-40 \sim 85$ °C) | PARAN | RAMETER SYMBOL | | TEST CONDITION | | V _{CC} (V) | Min | Max | UNIT | |------------------------------|----------------|-----------------|--|---------------------------|---------------------|--------------------------|--------|---------| | Input | "H" Level | V _{IH} | | | 2.7~3.6 | 2.0 | | V | | Voltage | "L" Level | V _{IL} | | | 2.7~3.6 | | 0.8 | V | | | | | | $I_{OH} = -100 \mu A$ | 2.7~3.6 | V _{CC}
- 0.2 | ı | | | | "H" Level | Voн | V _{IN} = V _{IH} or V _{IL} | $I_{OH} = -12 \text{ mA}$ | 2.7 | 2.2 | _ | | | 044 | | | | $I_{OH} = -18 \text{mA}$ | 3.0 | 2.4 | 1 | | | Output | | | | $I_{OH} = -24 \text{mA}$ | 3.0 | 2.2 | | V | | Voltage | "L" Level | VOL | | I _{OL} = 100 μA | 2.7~3.6 | _ | 0.2 | | | | | | V _{IN} = V _{IH} or V _{IL} | I _{OL} = 12 mA | 2.7 | _ | 0.4 | | | | L Level | VOL | AIM - AIH OL AIF | I _{OL} = 16 mA | 3.0 | _ | 0.4 | | | | | | | I _{OL} = 24 mA | 3.0 | _ | 0.55 | | | Input Leakag | ge Current | IN | V _{IN} = 0~5.5 V | | 2.7~3.6 | | ± 5.0 | μ A | | 3-State Outp
Off-State Cu | | loz | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$V_{OUT} = 0 \sim 5.5 \text{ V}$ | | 2.7~3.6 | 1 | ± 5.0 | μ A | | Power Off Lo | eakage | lOFF | V _{IN} / V _{OUT} = 5.5 V | | 0 | - | 10.0 | μ A | | Quiescent Su | pply | | V _{IN} = V _{CC} or GND | | 2.7~3.6 | _ | 10.0 | ^ | | Current | | lcc | V _{IN} / V _{OUT} = 3.6~5.5 V | | 2.7~3.6 | _ | ± 10.0 | μ A | | Increase In I | CC Per | Δlcc | V _{IH} = V _{CC} - 0.6 V | | 2.7~3.6 | | 500 | μΑ | TOSHIBA TC7MZ540FK #### AC characteristic (Ta = $-40 \sim 85$ °C) | PARAMETER | SYMBOL | TEST CONDITION | V _{CC} (V) | Min | Max | UNIT | |---------------------|-------------------|----------------|---------------------|-----|-----|------| | Propagation Delay | t _{pLH} | (Fig. 1, 2) | 2.7 | _ | 7.5 | nc | | Time | t _{pHL} | (Fig.1, 2) | 3.3 ± 0.3 | 1.5 | 6.5 | ns | | Output Enable Time | t _p ZL | /Eig 1 2) | 2.7 | _ | 9.5 | nc | | Output Enable Time | ^t pZH | (Fig.1, 3) | 3.3 ± 0.3 | 1.5 | 8.5 | ns | | Outnut Disable Time | t _{pLZ} | /Fig. 1. 2) | 2.7 | _ | 8.5 | 200 | | Output Disable Time | t _{pHZ} | (Fig.1, 3) | 3.3 ± 0.3 | 1.5 | 7.5 | ns | | Output To Output | tosLH | (Noto 10) | 2.7 | | _ | nc | | Skew | tosHL | (Note 10) | 3.3 ± 0.3 | | 1.0 | ns | (Note 10): Parameter guaranteed by design. $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \ t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$ # Dynamic Switching Characteristics (Ta = 25°C, Input t_{Γ} = t_{f} = 2.5 ns, C_{L} = 50 pF, R_{L} = 500 Ω) | PARAMETER | SYMBOL | TEST CONDITION | V _{CC} (V) | Тур. | UNIT | |--|------------------|--|---------------------|------|------| | Quiet Output Maximum Dynamic V _{OL} | V _{OLP} | $V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ | 3.3 | 0.8 | ٧ | | Quiet Output Minimum Dynamic $V_{\mbox{\scriptsize OL}}$ | Volv | $V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ | 3.3 | 0.8 | V | #### **Capacitive Characteristics** (Ta = 25°C) | PARAMETER | SYMBOL | TEST CONDITION | | V _{CC} (V) | Тур. | UNIT | |-------------------------------|-----------------|--------------------------|-----------|---------------------|------|------| | Input Capacitance | CIN | | | 3.3 | 7 | рF | | Output Capacitance | COUT | - | | 3.3 | 8 | рF | | Power Dissipation Capacitance | C _{PD} | f _{IN} = 10 MHz | (Note 11) | 3.3 | 40 | pF | (Note 11): CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption. Average operating current can be obtained by the equation: ICC (opr.) = CpD·VCC·fIN + ICC/8 (per bit) #### **Test Circuit** Fig.1 | PARAMETER | SWITCH | |-------------------------------------|--------| | t _{PLH} , t _{PHL} | Open | | ^t pLZ, ^t pZL | 6.0 V | | ^t pHZ ^{, t} pZH | GND | #### **AC** Waveform Fig.2 t_{pLH}, t_{pHL} Fig.3 t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH} Unit: mm ## **Outline Drawing** VSSOP20-P-0030-0.50 Weight: 0.03 g (typ.)