

June 2002

Revised January 2003

AIRCHI

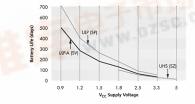
SEMICONDUCTOF

NC7SV57 • NC7SV58 TinyLogic® ULP-A Universal Configurable 2-Input Logic Gates

General Description

The NC7SV57 and NC7SV58 are universal configurable 2-input logic gates from Fairchild's Ultra Low Power (ULP-A) Series of TinyLogic®. ULP-A is ideal for applications that require extreme high speed, high drive and low power. This product is designed for a wide low voltage operating range (0.9V to 3.6V $\mathrm{V}_{\mathrm{CC}})$ and applications that require more drive and speed than the TinyLogic ULP series, but still offer best in class low power operation. Each device is capable of being configured for 1 of 5 unique 2-input logic functions. Any possible 2-input combinatorial logic function can be implemented as shown in the Function Selection Table. Device functionality is selected by how the device is wired at the board level. Figure 1 through Figure 10 illustrate how to connect the NC7SV57 and NC7SV58 respectively for the desired logic function. All inputs have been implemented with hysteresis.

The NC7SV57 and NC7SV58 are uniquely designed for optimized power and speed, and are fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.


Features

- \blacksquare 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V
- Extremely High Speed tpp
- 2.5 ns typ for 2.7V to 3.6V V_{CC}
- 3.1 ns typ for 2.3V to 2.7V V_{CC}
- 4.0 ns typ for 1.65V to 1.95V V_{CC}
- 6.0 ns typ for 1.4V to 1.6V V_{CC}
- 8.0 ns typ for 1.1V to 1.3V V_{CC}
- 23.0 ns typ for 0.9V V_{CC}
- Power-Off high impedance inputs and outputs
- High Static Drive (I_{OH}/I_{OL})
 - ±24 mA @ 3.00V V_{CC}
 - ±18 mA @ 2.30V V_{CC}
- @ 1.65V V_{CC}
- @ 1.4V V_{CC} +4 mA
- @ 1.1V V_{CC} ±2 mA
- ±0.1 mA @ 0.9V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SV57P6X	MAA06A	V57	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SV57L6X	MAC06A	H3	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel
NC7SV58P6X	MAA06A	V58	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SV58L6X	MAC06A	H4	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Battery Life vs. V_{CC} Supply Voltage

TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly Battery Life = (V_{battery} *I_{battery} *.9)/(P_{device})/24hrs/day Where, $\mathsf{P}_{device} = (\mathsf{I}_{CC} \ ^{\star} \ \mathsf{V}_{CC}) + (\mathsf{C}_{PD} + \mathsf{C}_L) \ ^{\star} \ \mathsf{V}_{CC} \ ^2 \ ^{\star} \ \mathsf{f}$ Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with C1 = 15 pF load

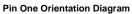
TinyLogic®, MicroPak™, and Quiet Series™ are trademarks of Fairchild Semiconductor Corporation.

- - ±6 mA
- Ultra small MicroPak[™] leadfree package
- Ultra low Dynamic Power

NC7SV57 • NC7SV58

Pin Descriptions

Pin Name	Description
I ₀ , I ₁ , I ₂	Data Inputs
Y	Output


Function Table

	Inputs	5	NC7SV57	NC7SV58
I ₂	I ₁	I ₀	$Y = (I_0) \bullet (I_2) + (I_1) \bullet (I_2)$	$Y = (I_0) \bullet (I_2) + (I_1) \bullet (I_2)$
L	L	L	Н	L
L	L	Н	L	Н
L	Н	L	Н	L
L	Н	Н	L	Н
Н	L	L	L	Н
Н	L	Н	L	Н
Н	Н	L	Н	L
Н	Н	Н	Н	L

Connection Diagrams

Pin Assignments for SC70

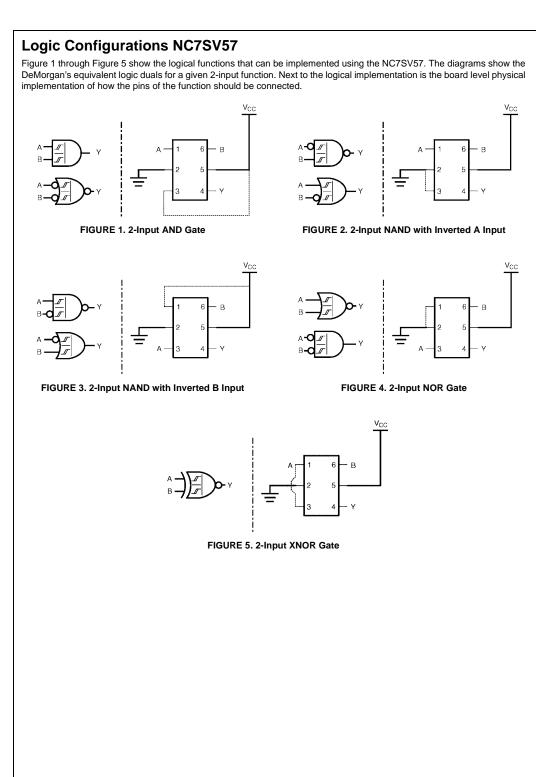
(Top View)

H = HIGH Logic Level L = LOW Logic Level

Function Selection Table

	Device	Connection
2-Input Logic Function	Selection	Configuration
2-Input AND	NC7SV57	Figure 1
2-Input AND with inverted input	NC7SV58	Figures 7, 8
2-Input AND with both inputs inverted	NC7SV57	Figure 4
2-Input NAND	NC7SV58	Figure 6
2-Input NAND with inverted input	NC7SV57	Figures 2, 3
2-Input NAND with both inputs inverted	NC7SV58	Figure 9
2-Input OR	NC7SV58	Figure 9
2-Input OR with inverted input	NC7SV57	Figures 2, 3
2-Input OR with both inputs inverted	NC7SV58	Figure 6
2-Input NOR	NC7SV57	Figure 4
2-Input NOR with inverted input	NC7SV58	Figures 7, 8
2-Input NOR with both inputs inverted	NC7SV57	Figure 1
2-Input XOR	NC7SV58	Figure 10
2-Input XNOR	NC7SV57	Figure 5

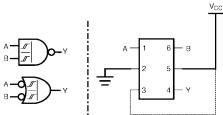
AAA represents Product Code Top Mark - see ordering code **Note:** Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).


 Pad Assignments for MicroPak

 I1
 6
 I2

 GND
 2
 5
 V_{CC}

 I0
 3
 4
 Y


⁽Top Thru View)

NC7SV57 • NC7SV58

Logic Configurations NC7SV58

Figure 6 through Figure 10 show the logical functions that can be implemented using the NC7SV58. The diagrams show the DeMorgan's equivalent logic duals for a given 2-input function. Next to the logical implementation is the board level physical implementation of how the pins of the function should be connected.

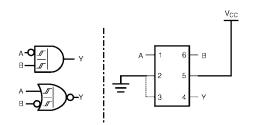
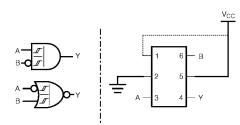



FIGURE 6. 2-Input NAND Gate

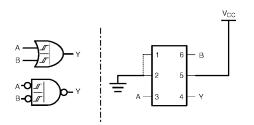


FIGURE 8. 2-Input AND with Inverted B Input

FIGURE 9. 2-Input OR Gate

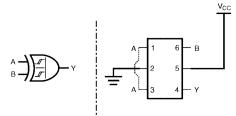


FIGURE 10. 2-Input XOR Gate

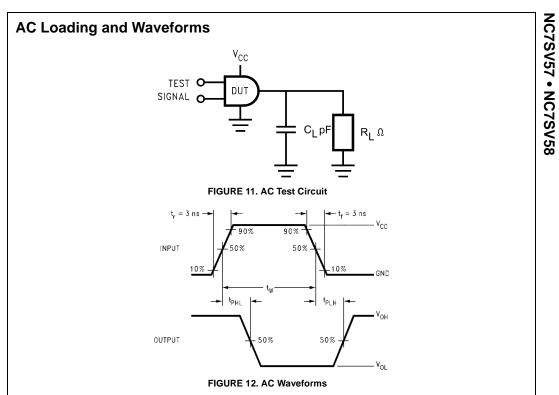
Recommended Operating

		Co
Supply Voltage (V _{CC})	-0.5V to +4.6V	
DC Input Voltage (V _{IN})	-0.5V to +4.6V	Su
DC Output Voltage (V _{OUT})		In
HIGH or LOW State (Note 2)	–0.5V to V_{CC} +0.5V	Ou
$V_{CC} = 0V$	-0.5V to +4.6V	
DC Input Diode Current (I _{IK}) $V_{IN} < 0V$	±50 mA	
DC Output Diode Current (I _{OK})		Ou
V _{OUT} < 0V	–50 mA	
V _{OUT} > V _{CC}	+50 mA	
DC Output Source/Sink Current (I_{OH}/I_{OL})	\pm 50 mA	
DC V_{CC} or Ground Current per		
Supply Pin (I _{CC} or Ground)	\pm 50 mA	
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	
		Fr

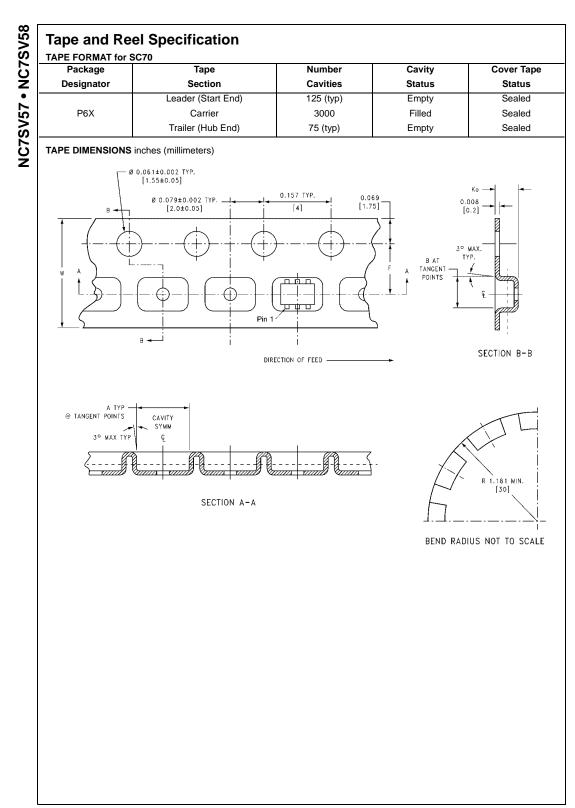
Absolute Maximum Ratings(Note 1)

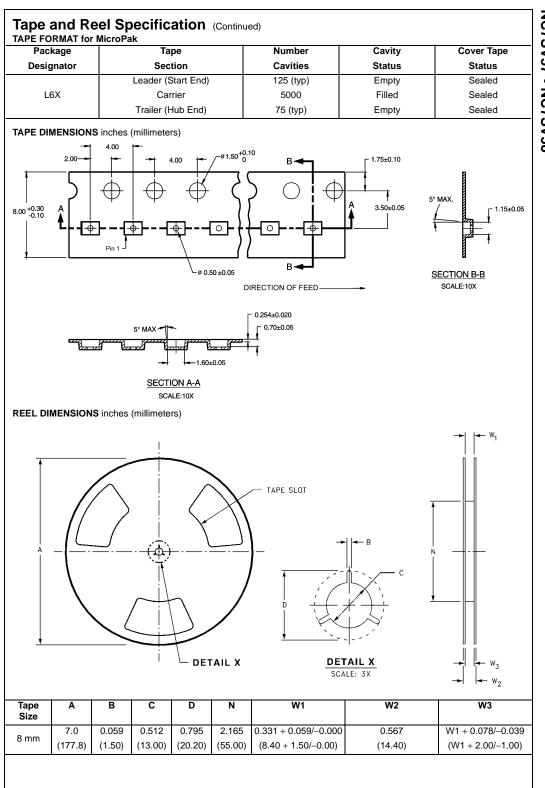
Recommended Operatin Conditions (Note 3)	g	NC7SV57 • NC7SV58
Supply Voltage	0.9V to 3.6V	5
Input Voltage (V _{IN})	0V to 3.6V	~
Output Voltage (V _{OUT})		Ż
$V_{CC} = 0.0 V$	0V to 3.6V	0
HIGH or LOW State	0V to V _{CC}	S
Output Current in I _{OH} /I _{OL}		5
$V_{CC} = 3.0V$ to 3.6V	±24 mA	õ
$V_{CC} = 2.3V$ to 2.7V	±18 mA	
V _{CC} = 1.65V to 1.95V	±6 mA	
$V_{CC} = 1.4V$ to 1.6V	±4 mA	
$V_{CC} = 1.1 V$ to 1.3V	±2 mA	
$V_{CC} = 0.9V$	±0.1 mA	
Free Air Operating Temperature (T_A)	$-40^\circ C$ to $+85^\circ C$	
Minimum Input Edge Rate ($\Delta t/\Delta V$)		
V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V	
Nete 4. Absolute Meximum Definition and these con-	to a final second code to be also	1

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

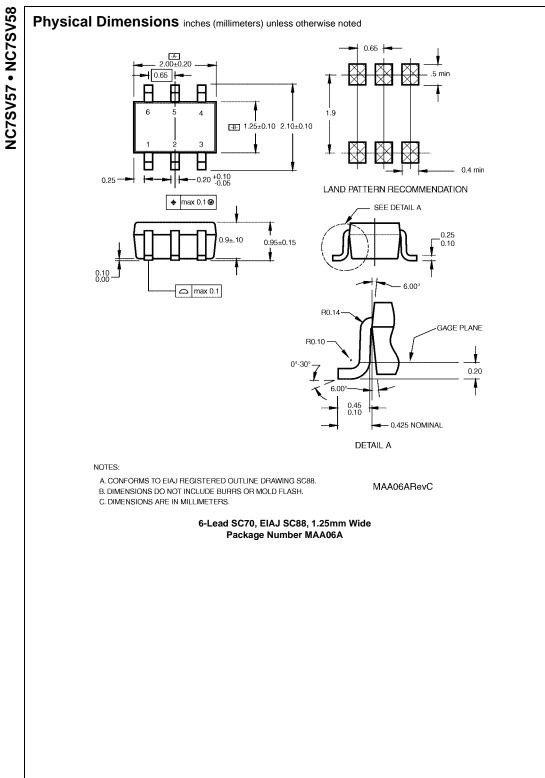

Note 2: I_{O} Absolute Maximum Rating must be observed.

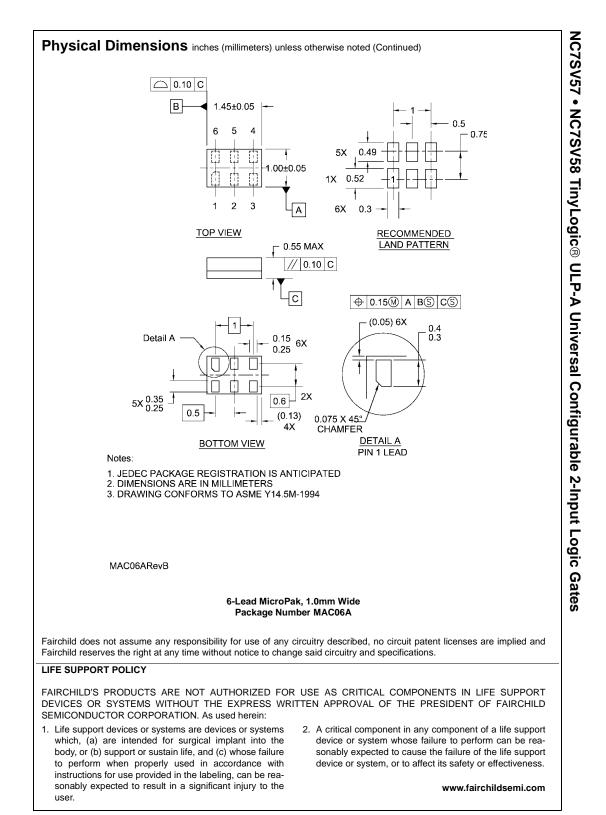
Note 3: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics


Symbol	Parameter	V _{cc}	T _A = -	+25°C	T _A = -40°	C to +85°C	Units	Conditions
c)	, arameter	(V)	Min	Max	Min	Max	01110	Contaitions
VP	Positive Threshold Voltage	0.90	0.3	0.7	0.3	0.7		
		1.10	0.4	1.0	0.4	1.0		
		1.40	0.5	1.4	0.5	1.4	v	
		1.65 0.7 1.5 0	0.7	1.5	v			
		2.30	1.0	1.8	1.0	1.8		
		2.70	1.3	2.2	1.3	2.2		
V _N	Negative Threshold Voltage	0.90	0.10	0.6	0.1	0.6		
		1.10	0.15	0.7	0.15	0.7	v	
		1.40	0.2	0.8	0.2	0.8		
		1.65	0.25	0.9	0.25	0.9	v	
		2.30	0.4	1.15	0.4	1.15		
		2.70	0.6	1.5	0.6	1.5		
V _H	Hysteresis Voltage	0.90	0.07	0.5	0.07	0.5		
		1.10	0.08	0.6	0.08	0.6		
		1.40	0.1	0.8	0.1	0.8	v	
		1.65	0.15	1.0	0.15	1.0	v	
		2.30	0.25	1.1	0.25	1.1		
		2.70	0.40	1.2	0.40	1.2		

Cumb al	Devenueto		· ·	v _{cc}	T,	A = +25	$T_A = +25^{\circ}C$		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		11-24-	Cond	lilana											
Symbol	Paramete	r		(V)	Min		Max	Min	Max	(Units	Cond	itions											
V _{OH}	HIGH Level		(0.90	$V_{CC} - 0$.1		V _{CC} - 0.1																
	Output Voltage		1.10 ≤ \	V _{CC} ≤ 1.30	$V_{CC} - 0$.1		V _{CC} - 0.1																
			1.40 ≤ \	V _{CC} ≤ 1.60	$V_{CC} - 0$.2		$V_{CC} - 0.2$				1 - 10	0											
			1.65 ≤ \	V _{CC} ≤ 1.95	$V_{CC} - 0$.2		$V_{CC} - 0.2$				$I_{OH} = -10$	10 μΑ											
			2.30 ≤ \	V _{CC} < 2.70	$V_{CC} - 0$.2		$V_{CC} - 0.2$																
			2.70 ≤ \	$V_{\rm CC} \le 3.60$	$V_{CC} - 0$.2		$V_{CC} - 0.2$																
			1.10 ≤ \	V _{CC} ≤ 1.30	0.75 x V	СС		0.75 x V _{CC}				$I_{OH} = -2$	mA											
			1.40 ≤ \	V _{CC} ≤ 1.60	0.75 x V	CC		0.75 x V _{CC}			V	$I_{OH} = -4$	mA											
			1.65 ≤ \	V _{CC} ≤ 1.95	1.25			1.25				I _{OH} = -6	mΔ											
			2.30 ≤ \	V _{CC} < 2.70	2.0			2.0				OH0												
			2.30 ≤ \	V _{CC} < 2.70	1.8			1.8				$I_{OH} = -12$	2 mA											
				$V_{\rm CC} \le 3.60$	2.2			2.2				·OH												
				V _{CC} < 2.70	1.7			1.7				$I_{OH} = -18$	3 mA											
				$V_{\rm CC} \le 3.60$	2.4			2.4				-												
				V _{CC} ≤ 3.60	2.2			2.2				I _{OH} = -24 mA												
V _{OL}	LOW Level			0.90			0.1		0.1															
	Output Voltage			V _{CC} ≤ 1.30			0.1		0.1															
				V _{CC} ≤ 1.60			0.2		0.2			$I_{OL} = 100$	μA											
				V _{CC} ≤ 1.95			0.2		0.2			02	•											
				/ _{CC} < 2.70			0.2		0.2															
				V _{CC} ≤ 3.60			0.2		0.2															
				V _{CC} ≤ 1.30			25 x V _{CC}		0.25 x	V V		$I_{OL} = 2 \text{ m}$												
				$V_{\rm CC} \le 1.60$		0.	25 x V _{CC}		0.25 x			$I_{OL} = 4 \text{ m}$												
				$V_{\rm CC} \le 1.95$			0.3		0.3			$I_{OL} = 6 \text{ m}$	A											
				$V_{\rm CC} < 2.70$			0.4 0.4		0.4 0.4			I _{OL} = 12 r	mA											
				$V_{\rm CC} \le 3.60$ $V_{\rm CC} < 2.70$			0.4		0.4															
							0.0		0.0			I _{OL} = 18 r	πA											
							$.70 \le V_{CC} \le 3.60$								$2.70 \le V_{CC} \le 3.60$			0.55	0.5				$ _{a_1} = 241$	mΔ
I _{IN}	Input Leakage Curre	nt			±0.1		±0.9			μA	$I_{OL} = 24 \text{ mA}$ $\mu A \qquad 0 \le V_1 \le 3.6 \text{ V}$													
	Power Off Leakage 0		0.90 to 3.60 0		1		5		,	μΑ	0 ≤ (V _I , V													
I _{OFF}	Quiescent Supply Cu						5	μΛ		$V_{I} = V_{CC}$	-													
	duiosoon ouppi, oo			to 3.60			0.0	5 ±5			μA	$V_{CC} \le V_I$												
AC E	lectrical Cl						1			I			Γ											
Symbol	Parameter	Vcc			_ = +25°C		~	0°C to +85°C	Units		Condit	ions	Figur Numb											
	-	(V)		Min	Тур	Мах	Min	Max					Numb											
t _{PHL}	Propagation Delay	0.90			15					_		$R_L = 1 M\Omega$												
t _{PLH}		1.10 ≤ V _{CC}		4.0	8	16.5	3.3	31.0		C _L =	= 15 p⊢, I	$R_{L} = 2 k\Omega$												
		1.40 ≤ V _{CC}		2.0	6	10.0	2.0	12.0	ns	_			Figure 11, 1											
		$1.65 \le V_{CC}$		2.0	4	9.1	1.9	10.0		-	= 30 pF		11, 1											
		$2.30 \le V_{CO}$		1.5	3.1	6.2	1.4	6.7		RL=	= 500Ω													
0	land Oracitana	2.70 ≤ V _{CC}	5 ≤ 3.60	1.2	2.5	5.4	1.2	6.1	- 5	4														
C _{IN}	Input Capacitance	0			8.0				pF															
C _{OUT}	Output Capacitance	0			12.0				pF	V -	0V cr V													
C _{PD}	Power Dissipation Capacitance	0.90 to	3.60		10				pF		0V or V ₀ 0 MHz	CC												


Symbol			v	cc		
Cymbol	$\textbf{3.3V}\pm\textbf{0.3V}$	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$	$\textbf{1.5V} \pm \textbf{0.10V}$	$\textbf{1.2V} \pm \textbf{0.10V}$	0.9V
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2



NC7SV57 • NC7SV58

www.fairchildsemi.com

