

FAIRCHILD SEMICONDUCTOR®

April 2000 Revised January 2003 NC7WZ00 TinyLogic® UHS Dual 2-Input NAND Gate

NC7WZ00

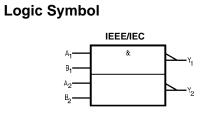
TinyLogic® UHS Dual 2-Input NAND Gate

General Description

The NC7WZ00 is a dual 2-Input NAND Gate from Fairchild's Ultra High Speed Series of TinyLogic®. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

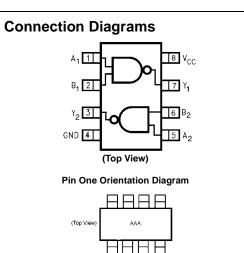
- Space saving US8 surface mount package
- MicroPak[™] leadless package
- Ultra High Speed; t_{PD} 2.4 ns typ into 50 pF at 5V V_{CC}
- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V–5.5V
- Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented


Ordering Code:

		Product				
Order	Package	Code	Package Description	Supplied As		
Number	Number	Top Mark		- 1		
NC7WZ00K8X	MAB08A	WZ00	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel		
NC7WZ00L8X (Preliminary)	MAC08A	N6	8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel		

TinyLogic® is a registered trademark and MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

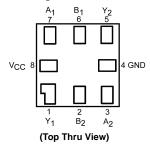
NC7WZ00


Pin Descriptions

Pin Names	Description				
A _n , B _n	Inputs				
Y _n	Output				

Function Table

	$\mathbf{Y} = \overline{\mathbf{AE}}$	5
Inp	uts	Output
Α	В	Y
L	L	Н
L	н	Н
н	L	Н
н	Н	L


H = HIGH Logic Level L = LOW Logic Level

AAA represents Product Code Top Mark - see ordering code **Note:** Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pin One

Pad Assignments for MicroPak

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (V _{IN})	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
$@V_{IN} < -0.5V$	–50 mA
DC Output Diode Current (I _{OK})	
$@V_{OUT} < -0.5V$	–50 mA
DC Output Current (I _{OUT})	\pm 50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	$\pm100~mA$
Storage Temperature (T _{STG})	–65°C to +150°C
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	250 mW

Recommended Operating Conditions (Note 2)

Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
V_{CC} @ 1.65V \pm 0.15V, 2.5V \pm 0.2V	0 ns/V to 20 ns/V
$V_{CC} @ 3.3V \pm 0.3V$	0 ns/V to 10 ns/V
$V_{CC} @ 5.0V \pm 0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	250°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

Units

V

V

V

V

V

v

μA

μΑ

μΑ

 $V_{IN} = V_{IL}$

Conditions

 $I_{OH} = -100 \ \mu A$

 $I_{OH} = -4 \text{ mA}$

 $I_{OH} = -8 \text{ mA}$

 $I_{OH} = -16 \text{ mA}$

 $I_{OH} = -24 \text{ mA}$ $I_{OH} = -32 \text{ mA}$

 $I_{OL} = 4 \text{ mA}$

 $I_{OL} = 8 \text{ mA}$

I_{OL} = 16 mA

I_{OL} = 24 mA I_{OL} = 32 mA

 $V_{IN} = V_{IH}$ $I_{OL} = 100 \ \mu A$

 $V_{IN} = 5.5V, GND$

V_{IN} = 5.5V, GND

V_{IN} or V_{OUT} = 5.5V

Vcc $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$ Symbol Parameter (V) Min Тур Max Min Max VIH HIGH Level Input Voltage 1.65-1.95 0.75 V_{CC} 0.75 V_{CC} 2.3-5.5 0.70 V_{CC} 0.70 V_{CC} 0.25 V_{CC} 0.25 V_{CC} V_{IL} LOW Level Input Voltage 1.65-1.95 0.30 V_{CC} 0.30 V_{CC} 2.3-5.5 HIGH Level Output Voltage V_{ОН} 1.65 1.55 1.65 1.55 2.3 2.2 2.3 2.2 3.0 2.9 3.0 2.9 4.5 4.5 4.4 4.4 1.65 1.29 1.52 1.69 2.3 1.9 2.15 1.9 3.0 2.4 2.80 2.4 3.0 2.3 2.68 2.3

3.8

4.20

0.0

0.0

0.0

0.0

0.08

0.10

0.15

0.22

0.22

3

0.1

0.1

0.1

0.1

0.24

0.3

0.4

0.55

0.55

±0.1

1

1

4.5

1.65

2.3

3.0

4.5

1.65

2.3

3.0

3.0

4.5

0-5.5

0.0

1.65-5.5

260°C 250 mW Note 1: Absolute maximum ra may be damaged or have its

3.8

0.1

0.1

0.1

0.1

0.24

0.3

0.4

0.55

0.55

±1.0

10

10

DC Electrical Characteristics

LOW Level Output Voltage

Input Leakage Current

Power Off Leakage Current

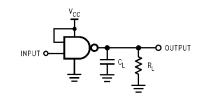
Quiescent Supply Current

V_{OL}

I_{IN}

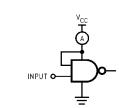
IOFF

lcc

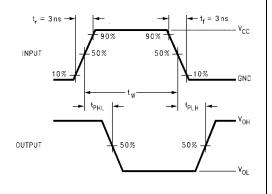

0
0
Ñ
>
5
Ň
C
Z

AC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Fig. No.
	Faranieter	(V)	Min	Тур	Max	Min	Max	Units	conultions	Fig. NO.
t _{PLH} ,	Propagation Delay	1.8 ± 0.15	2.0	5.3	9.6	2.0	9.8			
t _{PHL}		2.5 ± 0.2	1.2	3.2	5.3	1.2	5.7	ns	$C_{L} = 15 \text{ pF},$	Figures
		3.3 ± 0.3	0.8	2.4	3.7	0.8	4.0	115	$R_L = 1 M\Omega$	1, 3
		5.0 ± 0.5	0.5	1.9	2.9	0.5	3.2			
t _{PLH,}	Propagation Delay	$\textbf{3.3}\pm\textbf{0.3}$	1.2	3.0	4.6	1.2	4.9	ns	$C_{L} = 50 \text{ pF},$	Figures 1, 3
t _{PHL}		5.0 ± 0.5	0.8	2.4	3.6	0.8	3.9		$R_L = 500\Omega$	
CIN	Input Capacitance	0		2.5				pF		
C _{PD}	Power Dissipation Capacitance	3.3		13				pF	(Note 3)	Figure 2
		5.0		17				PΓ	(14018-3)	r igule z

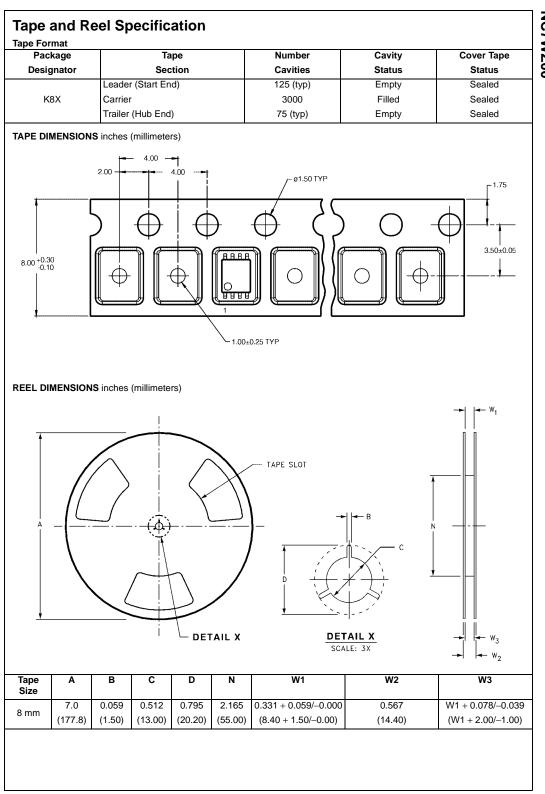

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{|N}) + (I_{CC}$ static).

AC Loading and Waveforms



 C_L includes load and stray capacitance Input PRR = 1.0 MHz; $t_w = 500$ ns

FIGURE 1. AC Test Circuit



Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

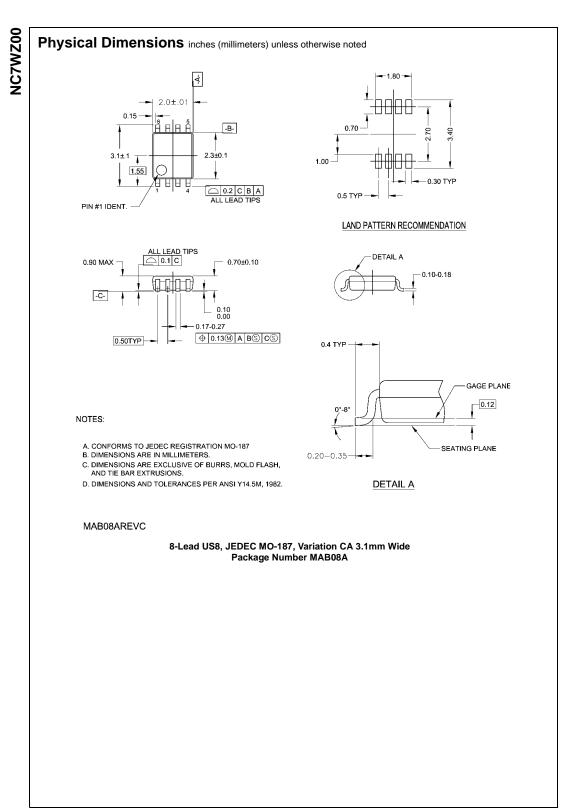
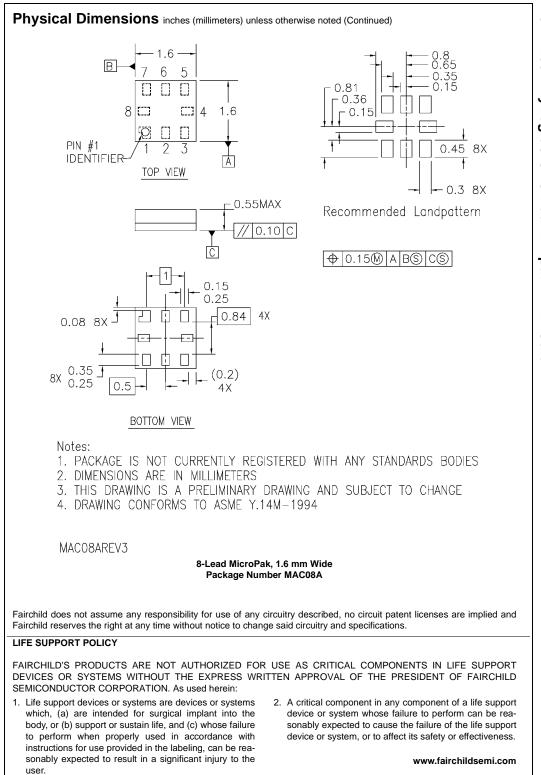


FIGURE 3. AC Waveforms


www.fairchildsemi.com

NC7WZ00

www.fairchildsemi.com

