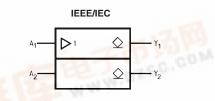


AIRCHI

Revised May 2003

NC7WZ07 TinyLogic® UHS Dual Buffer (Open Drain Outputs)

General Description


Features

- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- Ultra High Speed: t_{PZL} 2.3 ns Typ into 50 pF at 5V V_{CC}
- High I_{OL} Output Drive: +24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

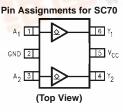
Ordering Code:

	07	S Dual E	Buffer (Open Drain O	March 1999 Revised May 2003
from Fairchild's I the space saving ricated with adva high speed with static power diss	is a dual buffe Ultra High Spee SC70 6-lead p anced CMOS te high output dr sipation over a	r with open drain d Series of TinyL ackage. The devi echnology to achi ive while mainta very broad V _{CC} o operate over the	Logic® in ce is fab- ieve ultra ining low 0.1.65V to import of the term import of the term 0.1.65V to 1.65V to 0.1.65V t	less package Is Typ into 50 pF at 5V V _{CC} mA at 3V V _{CC} e: 1.65V to 5.5V
5.5V V _{CC} range	The inputs and is 0V. Inputs to	olerate voltages	3.37 VCC	facilitate 5V to 3V translation
5.5V V _{CC} range. ance when V _{CC} independent of V Ordering O Order	The inputs and is 0V. Inputs th CC operating vo Code: Package	Product Code	up to 7V Power down high impedanc Overvoltage tolerant inputs	facilitate 5V to 3V translation
5.5 ^V V _{CC} range. ance when V _{CC} independent of V	The inputs and is 0V. Inputs th Cc operating vo	olerate voltages litage.	up to 7V Power down high impedanc Overvoltage tolerant inputs Patented noise/EMI reduction	facilitate 5V to 3V translation on circuitry implemented

Logic Symbol

Pin Descriptions

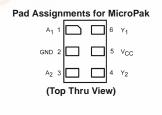
Pin Names	Description
A ₁ , A ₂	Data Inputs
Y ₁ , Y ₂	Output


Function Table

Input	Output
Α	Y
L	
н	Z

H = HIGH Logic Level L = LOW Logic Level

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.



Pin One Orientation Diagram AHH

AAA represents Product Code Top Mark - see ordering code Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

ΗH

Absolute Maximum Ratings(Note 1)

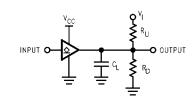
Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (VIN)	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
@ V _{IN} < -0.5V	–50 mA
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–50 mA
DC Output Current (I _{OUT})	+50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	$-65^\circ C$ to $+150^\circ C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 1.8V$, 2.5V $\pm 0.2V$	0 ns/V to 20 ns/V
$V_{CC}=3.3V\pm0.3V$	0 ns/V to 10 ns/V
$V_{CC}=5.0V\pm0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	350° C/W

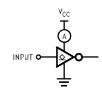
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A=-40^\circ C$ to $+85^\circ C$		Units	Conditions		
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	
VIH	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
I _{LKG}	HIGH Level Output	1.65 to 5.5			±5		±10	μA	$V_{IN} = V_{IH}$	
	Leakage Current	1.05 10 5.5			±3		±10	μА	$V_{OUT} = V_{C}$	_C or GND
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.0			
		1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1	V	$V_{IN}=V_{IL}$	$I_{OL} = 100 \ \mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.16	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.24	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.25	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 5$	5.5V
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OL}	_{JT} = 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1.0		10	μΑ	$V_{IN} = 5.5V$, GND

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		I.I. Ma		Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PZL}	Propagation Delay	1.65	1.8	6.6	11.5	1.8	12.6			
		1.8	1.8	5.5	9.5	1.8	10.5		$C_L = 50 \text{ pF}$	_
		2.5 ± 0.2	1.2	3.7	5.8	1.2	6.4	ns		500Ω Figures
		$\textbf{3.3}\pm\textbf{0.3}$	0.8	2.9	4.4	0.8	4.8		$RD = 500\Omega$	1, 0
		5.0 ± 0.5	0.5	2.3	3.5	0.5	3.9		$V_I = 2 \times V_{CC}$	
t _{PLZ}	Propagation Delay	1.65	1.8	5.5	11.5	1.8	12.6			
		1.8	1.8	4.3	9.5	1.8	10.5	$C_L = 50 \text{ pF}$	$C_L = 50 \text{ pF}$	
		2.5 ± 0.2	1.2	2.8	5.8	1.2	6.4	ns	$RU = 500\Omega$	Figures 1, 3
		3.3 ± 0.3	0.8	2.1	4.4	0.8	4.8		$RD = 500\Omega$	1, 5
		5.0 ± 0.5	0.5	1.4	3.5	0.5	3.9		$V_I = 2 \times V_{CC}$	
CIN	Input Capacitance	0		2.5				pF		
COUT	Output Capacitance	0		4.0				pF		
C _{PD}	Power Dissipation	3.3		3				ъE	(Note 2)	Figure 2
10	Capacitance	5.0		4				pF (Not	(Note 3)	Figure 2


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{N}) + (I_{CC} \text{static}).$

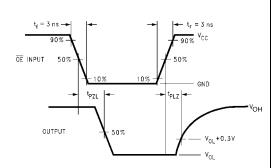
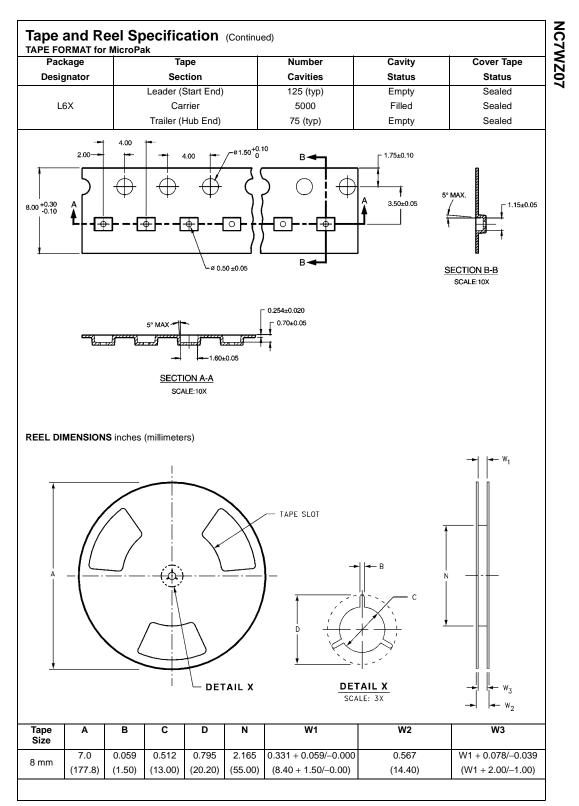
AC Loading and Waveforms

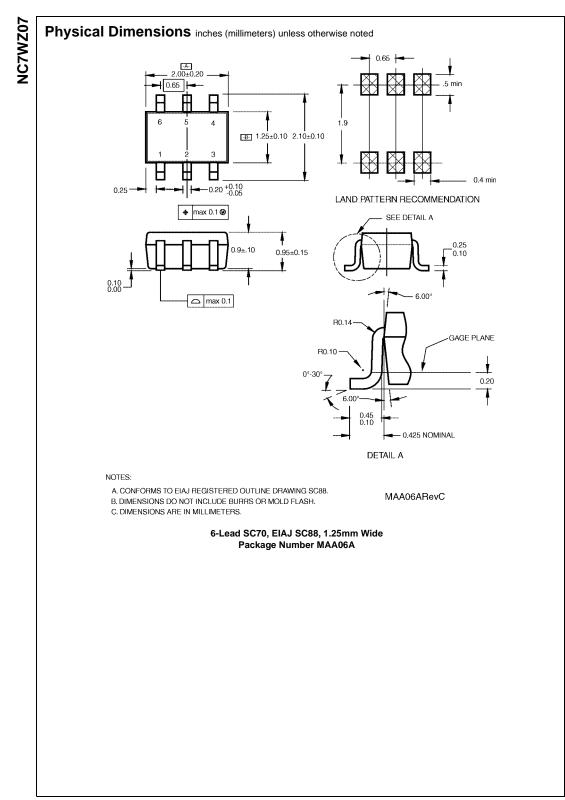
 C_{L} includes load and stray capacitance Input PRR = 1.0 MHz; t_{W} = 500 ns

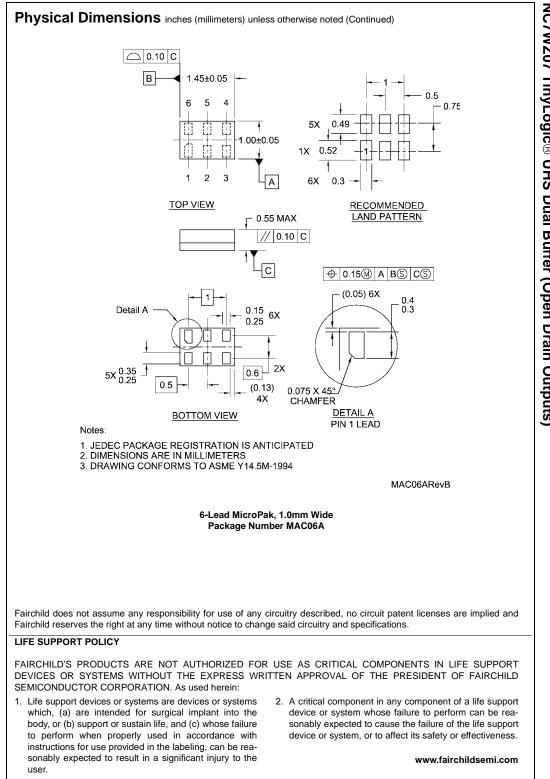
FIGURE 1. AC Test Circuit

Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50%

FIGURE 2. I_{CCD} Test Circuit


FIGURE 3. AC Waveforms


www.fairchildsemi.com

3

SX	Tape Section		Number	Cavit		Cover Tap
5X			Cavities	Status		Status
SX	Leader (Start End	-1)	125 (typ)	Empty		Sealed
	Carrier	u)	3000	Filled		Sealed
	Trailer (Hub End	n	75 (typ)	Empty		Sealed
		Pin 1 Pin 1 Direction C		069 -75] F A TANG F OII	NTS	TION B-B
	SECTION	 А-А]	.181 MIN. [30]
			514.5			
Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	
8 mm	0.093 (2.35)	0.096 (2.45)	0.138 ± 0.004 (3.5 ± 0.10)	0.053 ± 0.004 (1.35 ± 0.10)	0.157 (4)	0.315 ± 0 (8 ± 0.
A TYP GENT POINTS 3° MAX TYP			K SYMM		SYMM E SECTION A-A	

