

March 1999

Revised May 2003

FAIRCHILD

SEMICONDUCTOR

NC7WZ16 TinyLogic® UHS Dual Buffer

General Description

The NC7WZ16 is a dual buffer from Fairchild's Ultra High Speed Series of TinyLogic® in the space saving SC70 6-lead package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and outputs are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

12.12

Features

- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- \blacksquare Ultra High Speed: t_{PD} 2.4 ns Typ into 50 pF at 5V V_{CC}
- High Output Drive: ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7WZ16P6X	MAA06A	Z16	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7WZ16L6X	MAC06A	C7	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Logic Symbol

Pin Descriptions

Pin Names	Description
A ₁ , A ₂	Data Inputs
Y ₁ , Y ₂	Output

Function Table

Input	Output
Α	Y
L	
н	OH-

L = LOW Logic Level

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

Connection Diagrams

Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code Note: Orientation of Top Mark determines Pin One location. Read the top

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

© 2003 Fairchild Semiconductor Corporation DS500216

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (VIN)	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{IN} < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
V _{OUT} < 0V	–50 mA
DC Output Source/Sink Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Recommended Operating Conditions (Note 2)

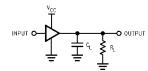
Supply Voltage	
Operating (V _{CC})	1.65V to 5.5V
Data Retention	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Input Rise and Fall Time (t _r , t _f)	
$V_{CC}=1.8V,2.5V\pm0.2V$	0 to 20 ns/V
$V_{CC}=3.3V\pm0.3V$	0 to 10 ns/V
$V_{CC}=5.5V\pm0.5V$	0 to 5 ns/V
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance (θ_{JA})	350°C/W
Note 1: Absolute maximum ratings are DC values	

Note 1. Adsolute inactinuum ratings are boy values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	v _{cc}	٦	T _A = +25°C	;	$T_A = -40^{\circ}$	C to +85°C	Units	60	nditions
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Co	attions
VIH	HIGH Level Control	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		v		
	Input Voltage	2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Control	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
		1.65	1.55	1.65		1.55				
V _{OH}	HIGH Level Control	1.8	1.7	1.8		1.7				
	Output Voltage	2.3	2.2	2.3		2.2				$I_{OH} = -100 \ \mu A$
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4		v	$V_{IN} = V_{IH}$	
		1.65	1.29	1.52		1.21		v	$v_{IN} = v_{IH}$	$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.14		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.75		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.62		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.13		3.8				$I_{OH} = -32 \text{ mA}$
		1.65		0.0	0.1	1	0.1			
V _{OL}	LOW Level Control	1.8		0.0	0.1		0.1			
	Output Voltage	2.3		0.0	0.1		0.1			$I_{OL} = 100 \ \mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1	v		
		1.65		0.08	0.24		0.24	v	$V_{IN}=V_{IL}$	$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.16	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.24	0.55		0.55			I _{OL} = 24 mA
		4.5		0.25	0.55		0.55			I _{OL} = 32 mA
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 8$	5.5V
I _{OFF}	Power Off Leakage Current	0.0			1.0		10	μΑ	V _{IN} or V _{OL}	_{JT} = 5.5V
Icc	Quiescent Supply Current	1.65 to 5.5			1.0		10	μA	$V_{IN} = 5.5V$, GND


AC Electrical Characteristics

~
C
1
<
<
N
_
ດ

Symbol	Parameter	V _{cc}		$\textbf{T}_{\textbf{A}}=+\textbf{25}^{\circ}\textbf{C}$		$T_A = -40^\circ$	C to +85°C	Units	Conditions	Figure
Symbol	Faranieler	(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH}	Propagation Delay	1.65	1.8	5.5	9.6	1.8	10.6			
t _{PHL}		1.8	1.8	4.6	8.0	1.8	8.8			_
		2.5 ± 0.2	1.0	3.0	5.2	1.0	5.8	ns	$C_{L} = 15 \text{ pF},$	Figures 1, 3
		3.3 ± 0.3	0.8	2.3	3.6	0.8	4.0		$R_L = 1 \ M\Omega$	1, 0
		5.0 ± 0.5	0.5	1.8	2.9	0.5	3.2			
t _{PLH}	Propagation Delay	$\textbf{3.3}\pm\textbf{0.3}$	1.2	3.0	4.6	1.2	5.1	30	C _L = 50 pF,	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.4	3.8	0.8	4.2	ns	$R_L=500\Omega$	1, 3
CIN	Input Capacitance	0		2.5				pF		
C _{PD}	Power Dissipation	3.3		10				pF	(Note 2)	Eiguro 2
	Capacitance	5.0		12				рн	(Note 3)	Figure 2

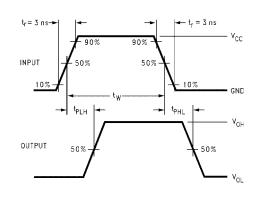
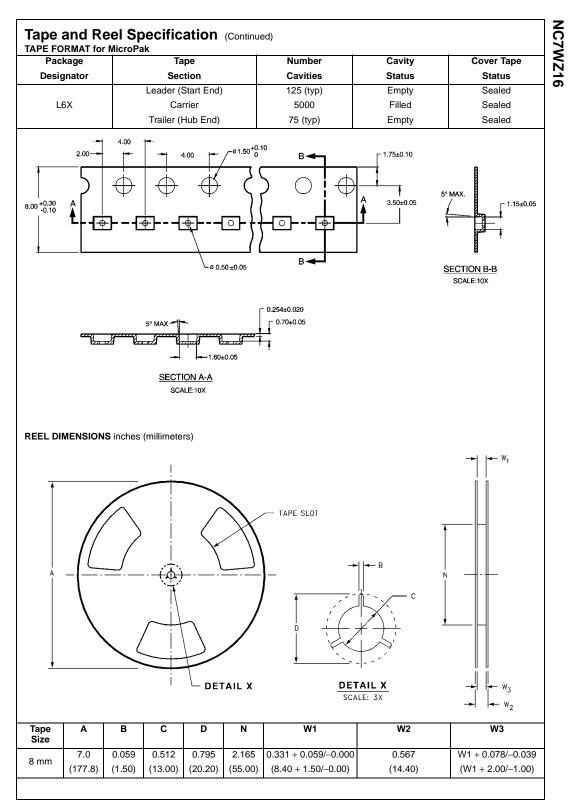
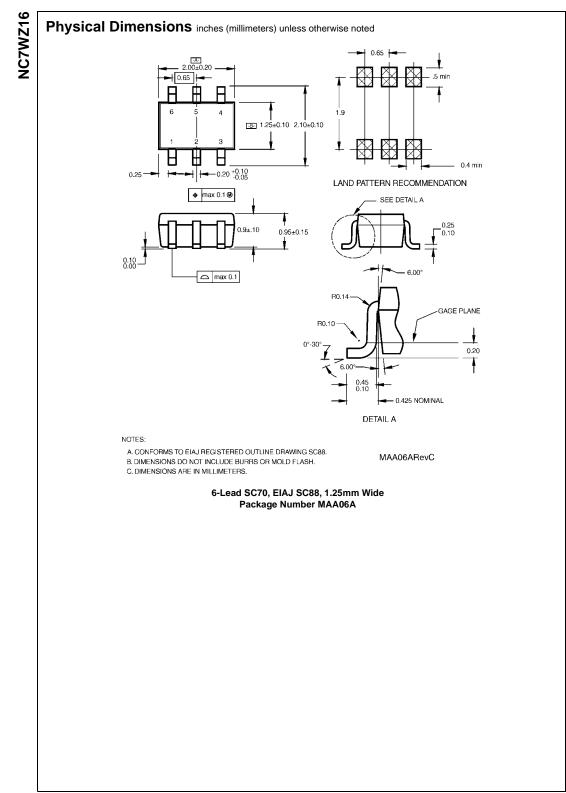
Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static).

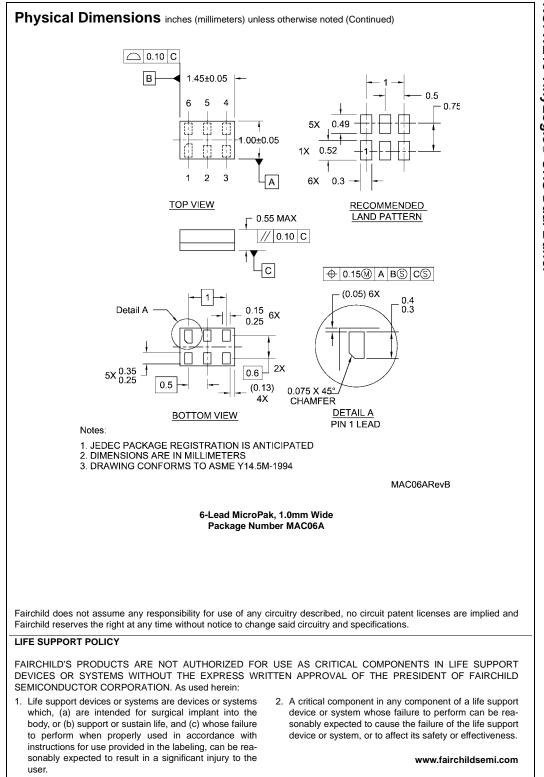
AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

FIGURE 1. AC Test Circuit

Input = AC Waveform; t₁ = t₁ = 1.8 ns; PRR = 10 MHz; Duty Cycle = 50% $FIGURE \ 2. \ I_{CCD} \ Test \ Circuit$


FIGURE 3. AC Waveforms

	e	Таре		Number	Cavit	/	Cover Tap
Designat		Section		Cavities	Statu		Status
	L	eader (Start End	(b	125 (typ)	Empty	/	Sealed
P6X		Carrier		3000	Filled		Sealed
		Trailer (Hub End)	75 (typ)	Empty	/	Sealed
W A			0.157 [4 		669 .75] F A TAN POI		
	1 1						\
<u></u>		SECTION	а-а]	.181 MIN. [30]
ξ <u></u>						CND RADIUS NO	DT TO SCAL
Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	END RADIUS NO	DT TO SCAL
Package SC70-6	Tape Size			DIM F 0.138 ± 0.004 (3.5 ± 0.10)		CND RADIUS NO	DT TO SCA

www.fairchildsemi.com

