intersil

捷多邦,专业PCB打样工厂,24小时加急出货

CA3275

April 1994

Dual Full Bridge Driver

Features

- . Two Full Bridge Drivers
- ± 150mA Maximum Current
- WWW.DZSC.CON **Logic Controlled Switching**
- Direction Control
- PWM I_{OUT} Control
- 18V Over-Voltage Protection
- 300mA Short-Circuit Protection
- Nominal 8V to 16V Operation
- Internal Voltage Regulation With Bandgap Reference

Applications

- Dual Full Bridge Driver For Air Core Gauge Instrumen-
- μP Controlled Sensor Data Displays
- Speedometer Displays
- Tachometer Displays
- **Stepper Motors**
- Slave Position Indicators

Description

The CA3275 Dual Full Bridge Driver is intended for generalpurpose applications requiring Dual Full Bridge drive or switching, including direction and pulse-width modulation for position control. While all features of the IC may not be utilized or required, they would normally be used in instrumentation systems with quadrature coils, such as air-core gauges, where the coils would be driven at frequencies ranging from 200Hz to 400Hz. The coils are wrapped at 90° angles for independent direction control. Coils wound in this physical configuration are controlled by pulse width modulation, where each coil drive is a function of the sine or cosine versus degrees of movement. The direction control is used to change the direction of the current in the H-Driver coil.

The switch rate capability of the IC is typically 30kHz regardless of the inductive load. Over-current limiting is used to limit short circuit current. Over-voltage protection (in the range of 18V to 24V) causes the device to shut down the output current drive. Thermal shutdown limits power dissipation on the chip. The CA3275 is supplied in a 14 lead dual-inline plastic package.

Ordering Information

PART NO.	TEMPERATURE	PACKAGE
CA3275E	-40°C to +85°C	14 Lead Plastic DIP

Pinout Block Diagram CA3275 (PDIP) TOP VIEW COIL A- 1 14 COIL A+ 13 GND V_{CC} 2 LA 3 SIN 12 PWMA V_{CC} 3 MICROPROCESSOR SENSOR & CA3275 PWMB 4 11 DIR A CONVERTER A/D, V/F, ETC PHASE, DIRECTION & PWM CONTROL DUAL-H DRIVER DIR B 5 10 GND 9 GND V_{CC} 6 8 COIL B+ COIL B- 7

Specifications CA3275

Absolute Maximum Ratings

Each Drive

Maximum PWM Output Switching Current, ±150mA

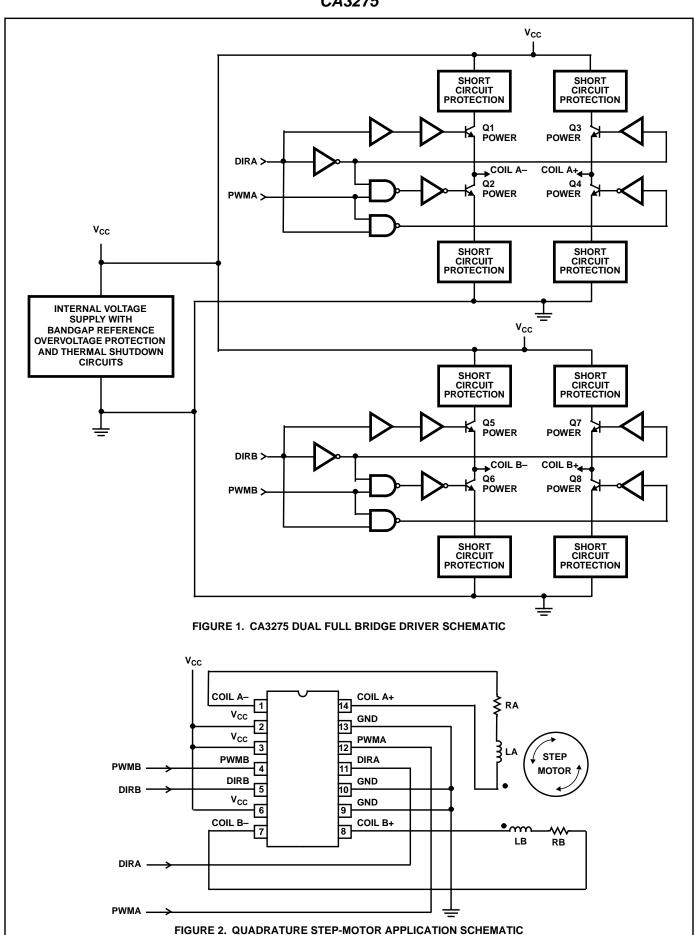
Each Drive

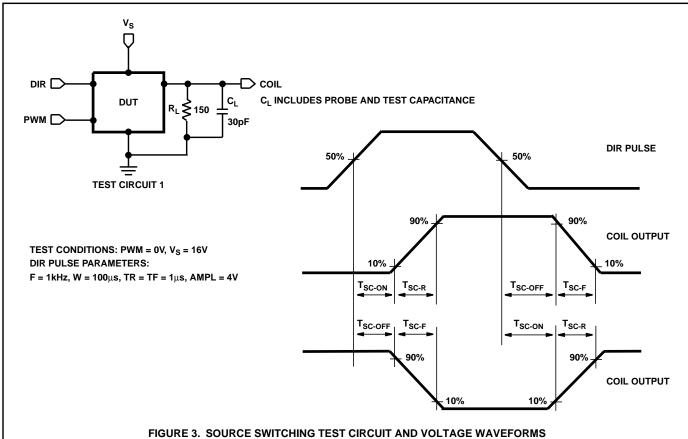
Thermal Information

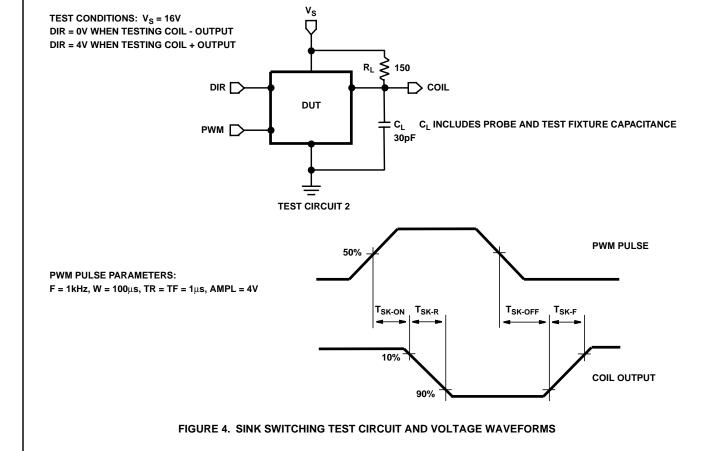
$ \begin{array}{ccc} \text{Thermal Resistance} & \theta_{JA} \\ \text{PDIP Package} & & 100^{\circ}\text{C/W} \end{array}$
Power Dissipation, P _D
Up to +70°C800mW
Above +70°C Derate Linearly at 10mW/°C
Ambient Temperature Range
Operating40°C to +85°C
5500 : 45000

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 16\text{V}$ Unless Otherwise Specified


PARAMETERS	SYMBOL	MIN	TYP	MAX	UNITS
Operating Supply Voltage Range	V _{CC}	8	-	16	V
Supply Current (Note 1)	I _{CC}	-	8	20	mA
INPUT LEVELS	•				
Logic Input, Low Voltage	V _{IL}	-	-	0.8	V
Logic Input, High Voltage	V _{IH}	3.5	-	-	V
Logic Input, Low Current, V _{IL} = 0V	I _{IL}	-10	-	-	μΑ
Logic Input, High Current, V _{IH} = 5V	I _{IH}	-	-	10	μΑ
OUTPUT: RLA = RLB = 138Ω					
Maximum Source Saturated Voltage	V _{SAT} - High	-	1.2	1.75	V
Maximum Sink Saturated Voltage	V _{SAT} - Low	-	0.25	0.5	V
Differential V _{SAT} Voltage, Both Outputs Saturated	Diff - V _{SAT}	-	10	100	mV


Switching Specifications


PARAMETERS	SYMBOL	MIN	TYP	MAX	UNITS
SOURCE CURRENT (See Figure 3)	-				
Turn-Off Delay	T _{SC-OFF}	-	-	2	μs
Fall Time	T _{SC-F}	-	-	2.2	μs
Turn-On Time	T _{SC-ON}	-	-	1	μs
Rise Time	T _{SC-R}	-	-	0.4	μs
SINK CURRENT (See Figure 4)					
Turn-Off Delay	T _{SK-OFF}	-	-	1.6	μs
Fall Time	T _{SK-F}	-	-	0.4	μs
Turn-On Time	T _{SK-ON}	-	-	0.6	μs
Rise Time	T _{SK-R}	-	-	0.2	μs

NOTE:

1. No load, PWMA = PWMB = 5V, DIR A = DIR B = 0V

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 727-9207

FAX: (321) 724-7240

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

Intersil (Taiwan) Ltd. Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310

FAX: (886) 2 2715 3029