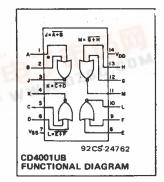
查询CD4001UB供应商

CMOS Quad 2-Input NOR Gate


High-Voltage Types (20-Volt Rating)

■ CD4001UB quad 2-input NOR gate provides the system designer with direct implementation of the NOR function and supplements the existing family of CMOS gates.

The CD4001UB types are supplied in 14tead hermetic dual-in-line ceramic packages (D and F suffixes), 14-lead dual-inline plastic packages (Esuffix), and in chip form (H suffix).

Features:

- Propagation delay time = 30 ns (typ.) at $C_L = 50 \text{ pF}$, $V_{DD} = 10 \text{ V}$
- Standardized symmetrical output characteristics
 100% tested for maximum quiescent current
- at 20 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"
 Maximum input current of 1 µA at 18 V
- over full package-temperature range; 100 nA at 18 V and 25°C
- 5-V, 10-V, and 15-V parametric ratings

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER- ISTIC	CONDITIONS			LIMITS AT INDICATED TE				MPERATURES (^O C)					
	Vo	VIN	VDD					+25			UNITS		
	(V)	(V)	(V)	55	-40	+85	+125	Min.	Тур.	Max.			
Quiescent Device Current, IDD Max.	1-02	0,5	5	0.25	0.25	7.5	7.5	-	0.01	0.25	μΑ		
	11	0,10	10	0.5	0.5	15	15	-	0.01	0.5			
		0,15	15	1	1	30	30	-	0.01	1			
	_	0,20	20	5	5	150	150	-	0.02	5			
Output Low (Sink) Current	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	27		
	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6				
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-			
Output High (Source) Current, IOH Min.	4.6	0,5	5	-0.64	-0.61	0.42	-0.36	-0.51	-1		mA		
	2,5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	11.2]		
	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-			
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8		1		
Output Voltage: Low-Level,		0,5	5		0	.05		-	0	0.05			
	-	0,10	10	0,05			-	0	0.05	v			
VOL Max.	_	0,15	15	0.05			-	0	0.05				
Output Voltage:	-	0,5	5	4.95			4.95	5	-				
High-Level, VOH Min.	-	0,10	10	9.95			9,95	10					
		0,15	15	14.95			14.95	15	-				
Input Low	0.5, 4.5		5	1			_		1				
Voltage, VIL Max.	1, 9		10		2					2			
	1.5,13.5	-	15	2.5			-	-	2.5	v			
Input High Voltage, VIH Min.	0.5	-	5			4		4	-	-	V		
	1	-	10		1	8		8		_			
	1.5	-	15		12.5 12.5 -			-					
Input Current	2-10	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ		

捷多邦,专业PCB打样工厂,24小时加急出货

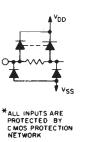
CD4001UB Types

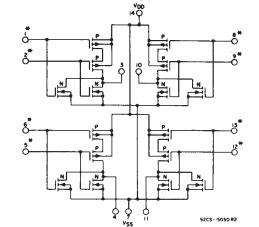
CD4001UB Types

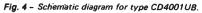
and the second second

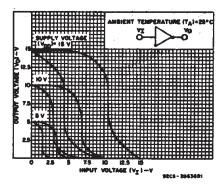
RECOMMENDED OPERATING CONDITIONS

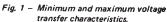
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

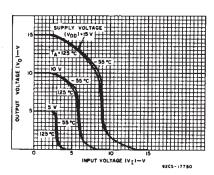

	LIN			
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package Temp- erature Range)	3	18	v	

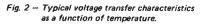

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to V _{SS} Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55^{\circ}C$ to $\pm 100^{\circ}C$	
For $T_A = +100^{\circ}C$ to $+125^{\circ}C$ D	
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package T	ypes)100mW
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s may	+265 ^o C


DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, input t_r, t_f = 20 ns, and C_L = 50 pF, R_L = 200 K\Omega


CHARACTERISTIC	TEST COND	LII				
CHARACTERISTIC		V _{DD} Volts	TYP.	MAX.	UNITS	
Propagation Delay Time,		5	60	120		
^t PHL ^{, t} PLH		10	30	60	ns	
·		15	25	50		
		5	100	200		
Transition Time,		10	50	100	ns	
tTHL ^{, t} TLH		15	40	80		
Input Capacitance, C _{IN}	Any Input		10	15	рF	





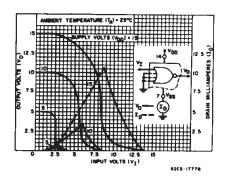


Fig. 3 – Typical current & voltage transfer characteristics.

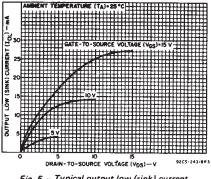
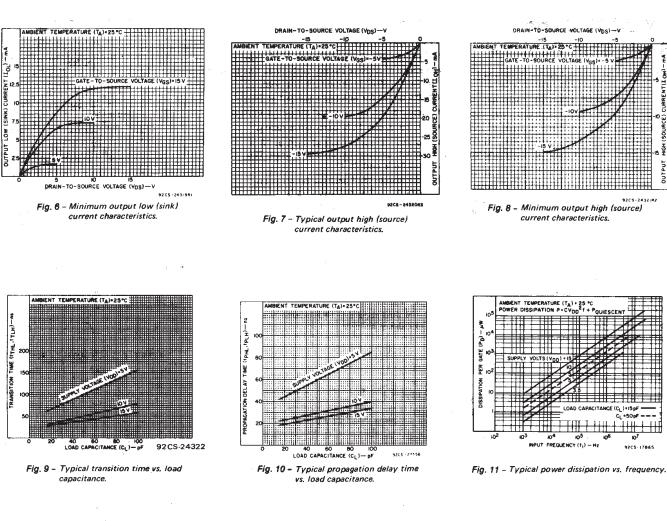



Fig. 5 – Typical output low (sink) current characteristics.

CD4001UB Types

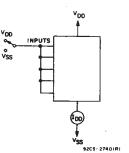


Fig. 12 - Quiescent-device-current test circuit.

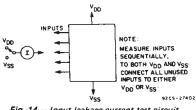
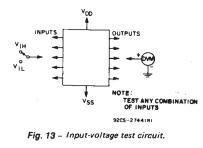
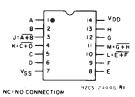
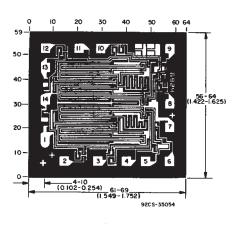




Fig. 14 - Input leakage current test circuit.



TERMINAL ASSIGNMENT

CD4001UB

CD4001UB

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

3

CURRENTLI OH

G GOURCE) HIGH (SOURCE)

OUTPUT

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated