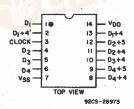
查询CD4006B供应商

Data sheet acquired from Harris Semiconductor SCHS017

CMOS 18-Stage Static Shift Register

High-Voltage Types (20-Volt Rating)

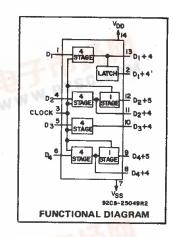

■ CD4006B types are composed of 4 separate shift register sections: two sections of four stages and two sections of five stages with an output tap at the fourth stage. Each section has an independent single-rail data path.

A common clock signal is used for all stages. Data are shifted to the next stage on negative-going transitions of the clock. Through appropriate connections of inputs and outputs, multiple register sections of 4, 5, 8, and 9 stages or single register sections of 10, 12, 13, 14, 16, 17 and 18 stages can be implemented using one CD4006B package. Longer shift register sections can be assembled by using more than one CD4006B.

To facilitate cascading stages when clock rise and fall times are slow, an optional output (D1+4') that is delayed one-half clockcycle, is provided (see Truth Table for Output from Term, 2).

The CD4006B types are supplied in 14-lead hermetic dual-in-line ceramic packages (D and F suffixes), 14-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

TERMINAL ASSIGNMENT


CD4006B Types

Features:

- Fully static operation
- Shifting rates up to 12 MHz @ 10 V (typ.)
- Permanent register storage with clock line high or low no information recirculation required
- 100% tested for quiescent current at 20 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature 1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V range) = 2.5 V at VDD = 15 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Serial shift registers Frequency division
- Time delay circuits

	TRUTH TAB	LE FOR SHIFT F	REGISTER STAG
i	D	CL♣	D + 1
i	0	7	0
	1	1	1

D ₁ +4	CL [▲]	D ₁ +4'	
0		0	
1		1	
х		NC	

LOW

= LEVEL CHANGE

Fig. 1 - Logic diagram and truth table (one register stage).

RECOMMENDED OPERATING CONDITIONS at T_A = 25°C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	LIN	UNITS		
	(V)	Min.	Max.		
Supply-Voltage Range (For T _A = Full Package Temperature Range)		3	18	v	
Clock Pulse Width, t _W	5 10 15	180 80 50	90.0	ns	
Data Setup Time, t _S	5 10 15	100 50 40	- - -	ns	
Data Hold Time, t _H	5 10 15	60 40 30	_ _ _	ns	
Clock Rise or Fall Time: t _r , t _f	5,10, 15	-	15	μS	
Clock Input Frequency, fCL	5 10 15	_ _ _	2.5 5 7	MHz	

CD4006B Types

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For T _A = +100°C to +125°C	Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package	Types)
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tsig)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ inch $(1.59 \pm 0.79$ mm) from case for 10s m	ax+265°C

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)					UNITS				
ISTIC	vo	VIN	۷ _{DD}						+25	,	ONTIS		
	(V)	(V)	(V)	-55	40	+85	+125	Min.	Тур.	Max.			
Quiescent Device Current, IDD Max.	_	0,5	5	5	5	150	150	-	0.04	5	μΑ		
	_	0,10	10	10	10	300	300	-	0.04	10			
	-	0,15	15	20	20	600	600	-	0.04	20			
		0,20	20	100	100	3000	3000	-	0.08	100			
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-			
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6		1		
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3 4	6.8	-	1		
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA		
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-			
Current, IOH Min.	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6				
IOH will.	13.5	0,15	15	-4.2	-4	-2.8	2.4	-3.4	-6.8	-			
Output Voltage:	_	0,5	5	0.05			-	0	0.05				
Low-Level, VOL Max.	_	0,10	10	0.05			-	0	0.05				
VOL Wax.		0,15	15	0.05			=	0	0.05	v			
Output Voltage:	_	0,5	5	4.95			4.95	5	-	"			
High-Level,	_	0,10	10	9.95 9.95 10 -				-	1				
VOH Min.		0,15	15	14,95			14.95	15	_				
Input Low	0.5, 4.5	_	5		1	.5		_		1.5			
Voltage,	1, 9	_	10			3			_	3	1		
VIL Max.	1.5,13.5	_	15	4			_	_	4				
Input High	0.5, 4.5	_	5	3.5 3.5			3.5	_	_	V			
Voltage,	1, 9	-	10	7			7	-					
VIH Min.	1.5,13.5	-	15		1	11		11	-	_			
Input Current IIN Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0.1	μА		

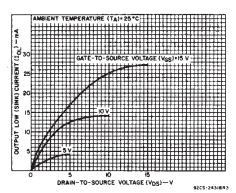


Fig. 2 – Typical output low (sink) current characteristics.

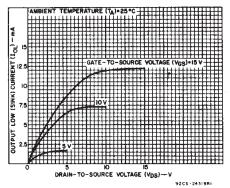


Fig. 3 – Minimum output low (sink) current characteristics.

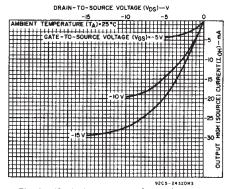


Fig. 4 — Typical output high (source) current characteristics.

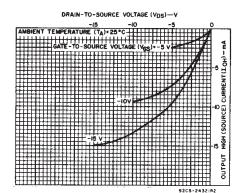


Fig. 5 — Minimum output high (source) current characteristics.

. . .

CD4006B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{\rm A}$ = 25°C; Input $t_{\rm t}$, $t_{\rm t}$ = 20 ns, $C_{\rm L}$ = 50 pF, $R_{\rm L}$ = 200 k Ω

CHARACTERISTIC	TEST CONDITIONS		LIMITS			
CHARACTERISTIC	V _{DD} (V)	MIN.	MIN. TYP.		UNITS	
Propagation Delay Time,	5	_	200	400		
tens, tess	10	_	100	200	ns	
	- 15	_	80	160	}	
Transition Time,	5		100	200	1	
t _{THL} , t _{TLH}	10	_	50	100	ns	
	15	_	40	80	1	
Minimum Data Setup Time,	5	-	50	100		
ts	10	_	25	50	ns	
	15	_	20	40		
Minimum Clock Pulse Width,	5		100	200		
t _w .	10	_	45	90	ns	
	15	_	30	60		
Maximum Clock Input	5	2.5	5		1	
Frequency, fcL	10	5	10	-	MHz	
	15	7	14	-		
Maximum Clock Input Rise or	5			15		
Fall Time, trCL, trCL*	10	–	[-	15	μs	
	15	–	_	15		
Input Capacitance, CiN	Any Input	_	5	7.5	pF	

^{*}If more than one unit is cascaded t_iCL should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

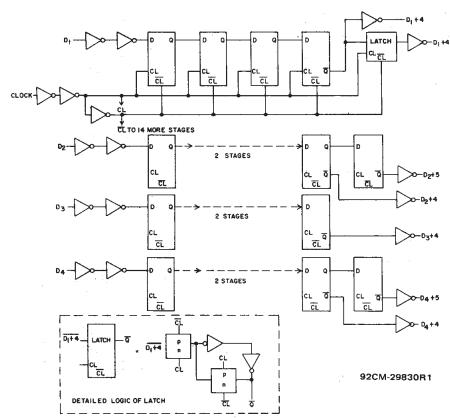


Fig. 6 - Logic diagram with detail of latch.

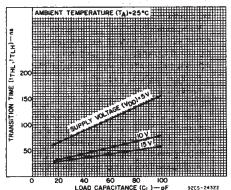


Fig. 7 – Typical transition time as a function of load capacitance.

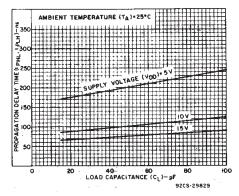


Fig. 8 – Typical propagation delay time as a function of load capacitance.

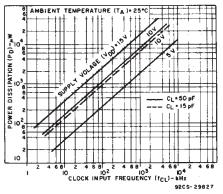


Fig. 9 — Typical dyanamic power dissipation as a function of clock frequency.

circuit.

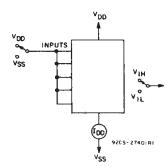


Fig. 11 - Quiescent device current test circuit.

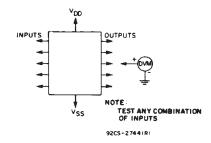


Fig. 12 - Input voltage test circuit.

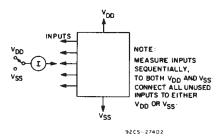
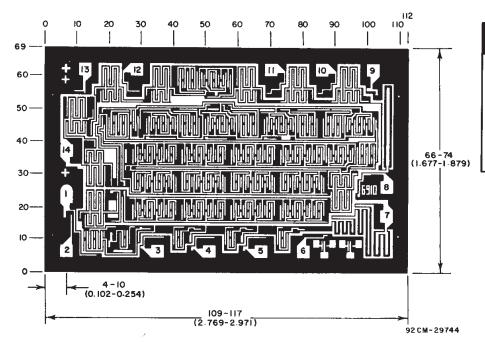



Fig. 13 - Input current test circuit.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10-3 inch).

Dimensions and pad layout for CD4006BH.

3

COMMERCIAL CMOS HIGH VOLTAGE ICS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated