

October 1987

Revised January 1999

D40106BC Hex Schmitt Trigger

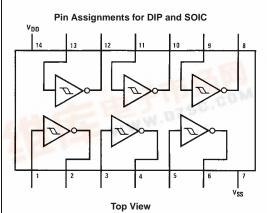
FAIRCHILD SEMICONDUCTORIM

CD40106BC Hex Schmitt Trigger

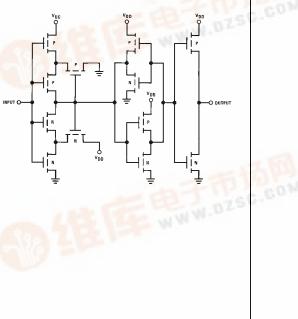
General Description

The CD40106BC Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement transistors. The positive and negative-going threshold voltages, V_{T+} and V_{T-}, show low variation with respect to temperature (typ 0.0005V/°C at V_{DD} = 10V), and hysteresis, V_{T+} – V_{T-} \geq 0.2 V_{DD} is guaranteed.

All inputs are protected from damage due to static discharge by diode clamps to $V_{\rm DD}$ and $V_{\rm SS}.$


Features

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.7 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Hysteresis: 0.4 V_{DD} (typ.), 0.2 V_{DD} guaranteed
- Equivalent to MM74C14
- Equivalent to MC14584B


Ordering Code:

Order Number	Package Number	Package Description
CD40106BCM	M14A	14-Lead Small Outline integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body
CD40106BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Connection Diagram

Schematic Diagram

Absolute Maximum Ratings(Note 1) (Note 2)

DC Supply Voltage (V _{DD}) Input Voltage (V _{IN}) Storage Temperature Range (T _S)	-0.5 to +18 V _{DC} -0.5 to V _{DD} +0.5 V _{DC} -65°C to +150°C
Power Dissipation (P _D) Dual-In-Line	700 mW
Small Outline Lead Temperature (T _L) (Soldering, 10 seconds)	500 mW 260°C

DC Electrical Characteristics (Note 3)

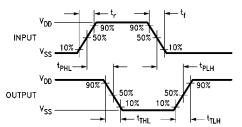
Recommended Operating Conditions (Note 2)

DC Supply Voltage (V _{DD})	3 to 15 V_DC
Input Voltage (V _{IN})	0 to V _{DD} V _{DC}
Operating Temperature Range (T _A)	$-40^\circ C$ to $+85^\circ C$
Note 1: "Absolute Maximum Ratings" are those v	alues beyond which the

safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

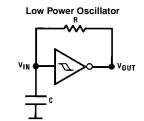
Note 2: $V_{SS} = 0V$ unless otherwise specified.

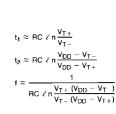
-40°C +25°C +85°C Symbol Parameter Conditions Units Min Max Min Тур Max Min Max Quiescent Device Current I_{DD} $V_{DD} = 5V$ 4.0 4.0 30 μΑ $V_{DD} = 10V$ 8.0 8.0 60 uΑ $V_{DD} = 15V$ 120 16.0 16.0 μΑ V_{OL} LOW Level Output |I_O| < 1 μA Voltage $V_{DD} = 5V$ 0.05 0.05 0.05 V $V_{DD} = 10V$ 0.05 0.05 0.05 V $V_{DD} = 15V$ 0.05 0.05 0.05 ٧ VOH HIGH Level Output |I_O| < 1 μA Voltage $V_{DD} = 5V$ 4.95 4.95 5 4.95 V $V_{DD} = 10V$ 9.95 9.95 10 0.95 V $V_{DD} = 15V$ 14.95 14.95 15 14.95 V $V_{DD} = 5V, V_{O} = 4.5V$ V_{T-} Negative-Going Threshold 0.7 2.0 0.7 1.4 2.0 0.7 2.0 V Voltage $V_{DD} = 10V, V_{O} = 9V$ 1.4 4.0 1.4 3.2 4.0 1.4 4.0 V $V_{DD} = 15V, V_{O} = 13.5V$ 2.1 6.0 2.1 5.0 6.0 2.1 6.0 V Positive-Going Threshold $V_{DD}=5V,\,V_O=0.5V$ V_{T+} 3.0 4.3 3.0 3.6 4.3 3.0 4.3 V $V_{DD} = 10V, V_{O} = 1V$ Voltage 8.6 V 6.0 8.6 6.0 6.8 6.0 8.6 $V_{DD} = 15V, V_{O} = 1.5V$ 9.0 12.9 9.0 10.0 12.9 9.0 12.9 V Hysteresis (V_{T+} - V_{T-}) $V_{DD} = 5V$ 3.6 1.0 2.2 3.6 V V_{H} 1.0 1.0 3.6 Voltage $V_{DD} = 10V$ 2.0 7.2 2.0 3.6 7.2 2.0 7.2 V $V_{DD} = 15V$ 3.0 10.8 3.0 50 10.8 3.0 10.8 V $V_{DD} = 5V, V_{O} = 0.4V$ LOW Level Output 0.52 0.44 0.88 0.36 I_{OL} mΑ $V_{DD} = 10V, V_{O} = 0.5V$ Current (Note 3) 2.25 1.3 1.1 0.9 mΑ $V_{DD} = 15V, V_{O} = 1.5V$ 3.6 3.0 8.8 2.4 mΑ HIGH Level Output $V_{DD} = 5V, V_O = 4.6V$ I_{OH} -0.52 -0.44 -0.88 -0.36 mΑ -2.25 Current (Note 3) $V_{DD} = 10V, V_{O} = 9.5V$ -1.3 -0.9 -1.1 mΑ $V_{DD} = 15V, V_O = 13.5V$ -3.6 -3.0 -8.8 -2.4 mA Input Current $V_{DD} = 15V, V_{IN} = 0V$ -0.30 -10^{-:} -0.30 -1.0 μΑ I_{IN} 10⁻⁵ $V_{DD} = 15V, V_{IN} = 15V$ 0.30 0.30 1.0 μΑ

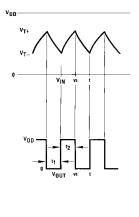

Note 3: I_{OH} and I_{OL} are tested one output at a time.

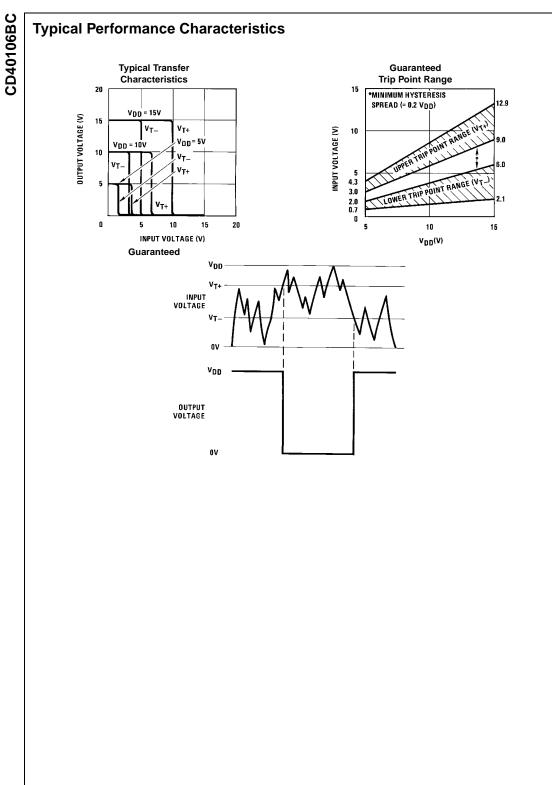
	pF, $R_L = 200k$, t_r and $t_f = 20$ ns, unless c					
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} or t _{PLH}	Propagation Delay Time from	$V_{DD} = 5V$		220	400	ns
	Input to Output	$V_{DD} = 10V$		80	200	ns
		$V_{DD} = 15V$		70	160	ns
t _{THL} or t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
Pin	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate (Note 5)		14		pF

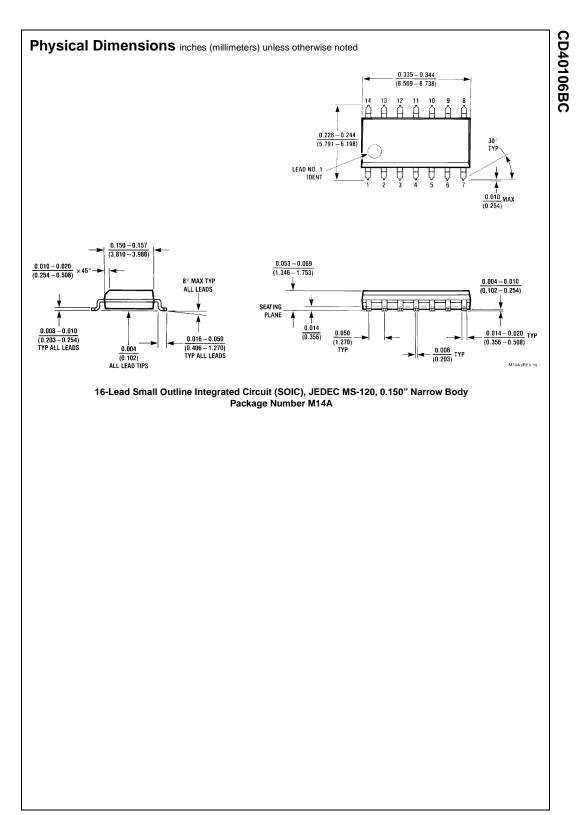
Note 4: AC Parameters are guaranteed by DC correlated testing.

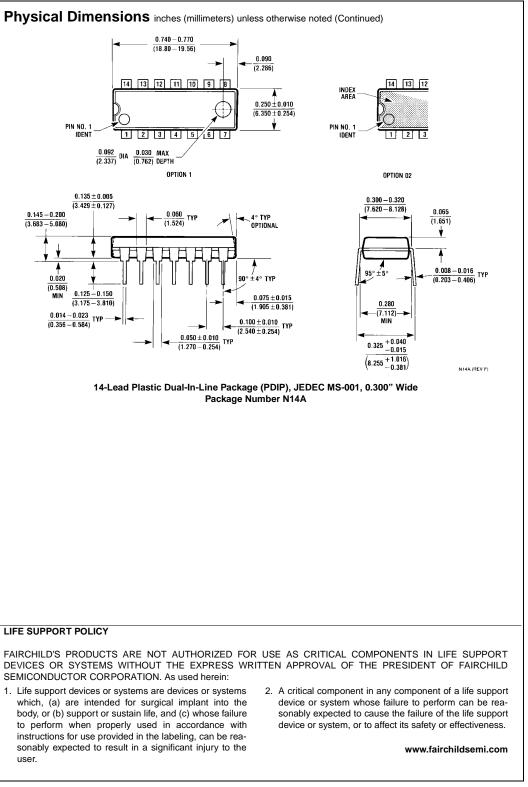

Note 5: C_{PD} determines the no load ac power consumption of any CMOS device. For complete explanation see 74C Family Characteristics Application Note, AN-90.


Switching Time Waveforms


 $t_{\rm f}=t_{\rm f}=20~{\rm ns}$


Typical Applications





Note: The equations assume $t_1 + t_2 >> t_{PHL} + t_{PLH}$

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.