

Data sheet acquired from Harris Semiconductor

Quad 2-Input Multiplexers

AC/ACT157 - Non-Inverting AC/ACT158 - Inverting

Type Features:

- Buffered inputs
- Typical propagation delay (AC/ACT158): 3.8 ns @ Vcc = 5 V, TA = 25° C, CL = 50 pF

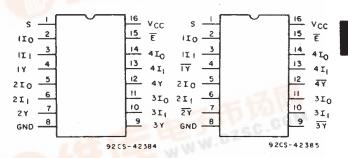
FUNCTIONAL DIAGRAM

The RCA CD54/74AC157, -158 and CD54/74ACT157, -158 quad 2-input multiplexers use the RCA ADVANCED CMOS technology. Both circuits can select four bits of data from two sources under the control of a common select input (S). The Enable input (E) is active LOW. When E is HIGH, all of the outputs of the 158 are forced HIGH and in the 157, all of the outputs are forced LOW, regardless of all other input conditions.

The CD74AC/ACT157 and CD74AC/ACT158 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC157, -158 and CD54ACT157, -158, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:


- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST®/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply.
- ± 24-mA output drive current
 - Fanout to 15 FAST® ICs
 - Drives 50-ohm transmission lines

FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TRUTH TABLE

	Select	ata	Output		
Enable	Input	Inp	uts	157	158
Ē	S	S I ₀ I ₁		Υ	Y
Н	X	X	Х	L	Н
L	L	L	X	L	Н
L	L	н	х	Н	L
L	н	X	L	L	н
L	н	X	Н	н	L

H = High level, L = Low level, X = Don't care

CD54/74AC/ACT157

CD54/74AC/ACT158

Technical Data

CD54/74AC157, CD54/74AC158 CD54/74ACT157, CD54/74ACT158

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (Vcc)	0.5 to 6 V
DC INPUT DIODE CURRENT, l_{ik} (for $V_1 < -0.5 \text{ V}$ or $V_1 > V_{CC} + 0.5 \text{ V}$)	
DC OUTPUT DIODE CURRENT, I_{OK} (for $V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V)	±50 mA
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, Io (for Vo > -0.5 V or Vo < Vo	$_{\infty}$ + 0.5 V) ±50 mA
DC V _{CC} or GROUND CURRENT (I _{CC} or I _{GND})	±100 mA*
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55 to +100°C (PACKAGE TYPE E)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE E)	ate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	rate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA)	55 to +125°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79$ mm) from case for 10 s maximum	+265°C
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lea	id tips only +300°C
* For up to 4 outputs per devices add ± 06 m8 for each additional autout	

^{*} For up to 4 outputs per device, add \pm 25 mA for each additional output.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

OHADAOTEDIOTIO	LIN	IITS	LIMITE
CHARACTERISTIC	MIN.	MAX.	צדואט
Supply-Voltage Range, Vcc*:			
(For T _A = Full Package-Temperature Range)	1		+
AC Types	1.5	5.5	V
ACT Types	4.5	5.5	V
DC Input or Output Voltage, V ₁ , V ₀	0	Vcc	V
Operating Temperature, T _A	-55	+125	°C
Input Rise and Fall Slew Rate, dt/dv			
at 1.5 V to 3 V(AC Types)	0	50	ns/V
at 3.6 V to 5.5 V(AC Types)	0	20	ns/V
at 4.5 V to 5.5 V(ACT Types)	0	10	ns/V

^{*}Unless otherwise specified, all voltages are referenced to ground.

STATIC ELECTRICAL CHARACTERISTICS: AC Series

				AMBIENT TEMPERATURE (TA) - °C							
CHARACTERISTICS		TEST CONDITIONS		V _{cc}	+	+25		-40 to +85		-55 to +125	
		V, (V)	I _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
High-Level Input				1.5	1.2	_	1.2	_	1.2	_	
Voltage	V _{IH}			3	2.1	_	2.1	_	2.1	<u> </u>	7 v
				5.5	3.85	_	3.85	_	3.85	_	1
Low-Level Input				1.5		0.3		0.3	_	0.3	
Voltage	VIL			3	_	0.9		0.9		0.9	V
				5.5		1.65	_	1.65	_	1.65	1
High-Level Output			-0.05	1.5	1.4		1.4	_	1.4	_	
Voltage	V _{он}	V _{IH}	-0.05	3	2.9	<u> </u>	2.9	· —	2.9		1
		or	-0.05	4.5	4.4	_	4.4	~~~	4.4	_	1
		VIL	-4	3	2.58	_	2.48	_	2.4	_	1 v
			-24	4.5	3.94	_	3.8		3.7	_	1
		#, * {	-75	5.5	_	_	3.85			_	1
			-50	5.5	_	_	_	_	3.85	_	1
Low Level Output			0.05	1.5	<u> </u>	0.1		0.1	_	0.1	
Voltage	Vol	V _{IH}	0.05	3	_	0.1	_	0.1	_	0.1	
		or	0.05	4.5	_	0.1	_	0.1	_	0.1	1
		VIL	12	3		0.36	_	0.44	_	0.5	1 v
			24	4.5		0.36	_	0.44	_	0.5	1
		#, * {	75	5.5		_	_	1.65	_	_	
		{	50	5.5	_	_	_	_	_	1.65	1 1
Input Leakage Current	l _t	V _∞ or GND		5.5	_	±0.1		±1		±1	μΑ
Quiescent Supply Current, MSI	lcc	V _{cc} or GND	0	5.5	_	8		80		160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

				AMBIENT TEMPERATURE (TA) - °C							
CHARACTERISTICS		TEST CO	NOITIONS	V _{cc}	+:	+25 -40		o +85	-55 to +125		UNITS
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	ViH			4.5 to 5.5	2	_	2		2	_	v
Low-Level Input Voltage	Vil			4.5 to 5.5	_	0.8	_	0.8		0.8	v
High-Level Output		ViH	-0.05	4.5	4.4	_	4.4		4.4		
Voltage	V _{OH}	or V _{IL}	-24	4.5	3.94	<u> </u>	3.8	I	3.7		V
		#. * {	-75	5.5			3.85				
		"'	-50	5.5	_	Ī —			3.85		
Low-Level Output		V _{IH}	0.05	4.5	_	0.1	_	0.1		0.1]
Voltage	Vol	or V _{IL}	24	4.5	_	0.36		0.44		0.5	V
-		#, * {	75	5.5	_	-	_	1.65	_		
		" '	50	5.5	_	<u> </u>				1.65	
Input Leakage Current	ŧ,	V _{cc} or GND		5.5		±0.1		±1		±1	μΑ
Quiescent Supply Current, MSI	lcc	V _{CC} or GND	0	5.5		8	_	80		160	μΑ
Additional Quiescent Current per Input F TTL Inputs High 1 Unit Load		V _{cc} -2.1		4.5 to 5.5		2.4	_	2.8	_	3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize nower dissination.

ACT INPUT LOADING TABLE

	UNIT LOAD*				
INPUT	157	158			
ł (All)	0.37	0.37			
Ē	0.83	0.83			
S	1.33	1.33			

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

power dissipation.

* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

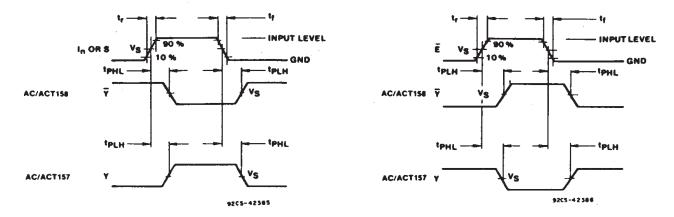
SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, C, = 50 pF

				AMBI	ENT TEMPE	RATURE (1	Γ _A) - °C	
CHARACTERISTICS		SYMBOL	V _{cc}	-40 t	o +85	-55 to	+125	UNITS
			(V)	MIN.	MAX.	MIN.	MAX.]
Propagation Delays: Data to Output	(157)	t _{PLH} t _{PHL}	1.5 3.3* 5†	3.2 2.2	97 10.8 7.7	 3 2.1	106 11.9 8.5	ns
Enable to Output	(157)	t _{РLН} t _{РНL}	1.5 3.3 5	5.1 3.6	154 17.2 12.3	4.7 3.4	169 18.9 13.5	ns
Select to Output	(157)	t _{PLH} t _{PHL}	1.5 3.3 5	5.4 3.8	164 18.5 13.2	 5.1 3.6	180 20.3 14.5	ns
Data to Output	(158)	t _{PLH} t _{PHL}	1.5 3.3 5	 3 2.2	91 12.8 7.3	_ 2.8 2	100 11.2 8	ns
Enable to Output	(158)	t _{PLH}	1.5 3.3 5	 4.5 3.2	135 15.2 10.8	4.2 3	149 16.7 11.9	ns
Select to Output	(158)	telн teнl	1.5 3.3 5	- 4.9 3.5	147 16.5 11.7	4.5 3.2	161 18.1 12.9	ns
Power Dissipation Capacitance	(157) (158)	C _{PD} §	С _{РФ} § — 156 Тур. 156 Тур. 149 Тур. 149 Тур.		156 Typ. 149 Typ.			pF
Input Capacitance		Cı			10	_	10	pF

SWITCHING CHARACTERISTIS: ACT Series; t,, t, = 3 ns, C_L = 50 pF

		1		AM	BIENT TEM	PERATURE	(T _A) - °C		
CHARACTERISTICS		SYMBOL	V _{cc} (V)		o +85		+125	UNITS	
			(*)	MIN.	MAX.	MIN.	MAX.		
Propagation Delays: Data to Output	(157)	tpLH tpHL	5†	2.5	8.6	2.4	9.5	ns	
Enable to Output	(157)	t _{РLН} t _{РНL}	5	3.6	12.3	3.4	13.5	ns	
Select to Output	(157)	tрін tрні	5	3.8	13.2	3.6	14.5	ns	
Data to Output	(158)	tецн tенц	5	2.4	8.4	2.3	9.2	ns	
Enable to Output	(158)	t _{PLH} t _{PHL}	5	3.3	11.3	3.1	12.4	ns	
Select to Output	(158)	telh tehl	5	3.6	12.3	3.4	13.5	ns	
Power Dissipation Capacitance	(157) (158)	C _{PD} §	_	156 Typ. 149 Typ.		156 Typ. 149 Typ.		pF	
Input Capacitance		Cı		<u> </u>	10	_	10	pF	

*3.3 V: min. is @ 3.6 V max. is @ 3 V


†5 V: min. is @ 5.5 V max. is @ 4.5 V §C_{PD} is used to determine the dynamic power consumption, per function.

For AC Series, $P_D = C_{PD}V_{CC}^2 f_i + \Sigma(C_L V_{CC}^2 f_o)$ For ACT Series, $P_D = C_{PD}V_{CC}^2 f_i + \Sigma(C_L V_{CC}^2 f_o) + V_{CC} \Delta I_{CC}$

where f_i = input frequency

fo = output frequency

 C_L = output load capacitance V_{CC} = supply voltage.

	CD54/74AC	CD54/74ACT
Input Level	Vcc	3 V
Input Switching Voltage, Vs	0.5 V _{CC}	1.5 V
Output Switching Voltage, Vs	0.5 V _{CC}	0.5 Vcc

Fig. 3 - Inputs or select to output propagation delays.

Fig. 4 - Enable to output propagation delays.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated