－Low Output Skew for Clock－Distribution and Clock－Generation Applications
－State－of－the－Art EPIC－IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
－TTL－Compatible Inputs and CMOS－Compatible Outputs
－Distributes One Clock Input to Six Clock Outputs
－Polarity Control Selects True or Complementary Outputs
－Distributed V_{CC} and GND Pins Reduce Switching Noise
－High－Drive Outputs（ $-15-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}$ ， 64－mA IOL）
－Packaged in Plastic Small－Outline Package

description

The CDC329 contains a clock driver circuit that distributes one input signal to six outputs with minimum skew for clock distribution．Through the use of the polarity control inputs（ \bar{T} / C ），various combinations of true and complementary outputs can be obtained．
The CDC329 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．
FUNCTION TABLE

INPUTS		OUTPUT
T／C	A	Y
L	L	L
L	H	H
H	L	H
H	H	L

logic symbol \dagger

\dagger This symbol is in accordance with ANSI／IEEE Std 91－1984 and IEC Publication 617－12．
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_{1} (see Note 1)	-1.2 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1)	$-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into any output in the low state, I_{0}	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Continuous total power dissipation at (or below) $25^{\circ} \mathrm{C}$	2) $\ldots \ldots . \ldots 1000 \mathrm{~mW}$
Storage tempera	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate to 478 mW at $85^{\circ} \mathrm{C}$ at the rate of $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
recommended operating conditions (see Note 3)

		MIN	NOM
V_{CC}	Supply voltage	MAX	UNIT
V_{IH}	High-level input voltage	4.75	5
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	5.25	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage		
IOH	High-level output current	0	0.8
IOL	Low-level output current	V	
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input transition rise or fall rate	V_{CC}	V
T_{A}	Operating free-air temperature	-15	mA

NOTE 3: Unused inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYP \dagger	MAX	UNIT
VIK	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOH}=-15 \mathrm{~mA}$		3.85			V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$				0.55	V
II	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND				± 1	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{l}=0$,	Outputs high			50	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND		Outputs low		20	30	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V				3		pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP	MAX	UNIT
tPLH	A	Any Y	2		6.6	ns
tPHL			1.7		5.4	
tPLH	T/C	Any Y	1.6		7.4	ns
tPHL			1.7		6.3	
${ }^{\text {skj }}$ (0)	A	Any Y (same phase)			0.5	ns
		Any Y (any phase)			2.5	
tr_{r}				2		ns
$\mathrm{tf}^{\text {f }}$				1.3		ns

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
tPLH	A	Any Y	2.3	5.9	ns
tphL			1.7	4.8	
$\mathrm{t}_{\text {sk }}(0)$	A	Any Y (same phase)	0.5		ns
		Any Y (any phase)			

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

Figure 1. Load Circuit and Voltage Waveforms

WAVEFORMS FOR CALCULATION OF $\mathrm{t}_{\mathbf{s k}(0)}$

 are at the same logic level. It is calculated as the greater of:
a) the difference between the fastest and slowest of tPLH from $A \uparrow$ to any Y
(e.g., tpLHn, $n=1$ to 4 ; or tpLHn, $n=5$ to 6),
b) the difference between the fastest and slowest of tPHL from $A \downarrow$ to any Y

$$
\text { (e.g., tpHLn, } n=1 \text { to } 4 \text {; or tpHLn, } n=5 \text { to } 6 \text {), }
$$

c) the difference between the fastest and slowest of tPLH from $A \downarrow$ to any Y (e.g., tPLHn, $n=7$ to 8), and
d) the difference between the fastest and slowest of tPHL from $A \uparrow$ to any Y (e.g., tPHLn, $n=7$ to 8).
 the same or different logic levels. It is calculated as the greater of:
a) the difference between the fastest and slowest of tPLH from $A \uparrow$ to any Y or tPHL from $A \uparrow$ to any Y
(e.g., tpLHn, $n=1$ to 4 ; or tPLHn, $n=5$ to 6 , and tPHLn, $n=7$ to 8), and
b) the difference between the fastest and slowest of tPHL from $A \downarrow$ to any Y or tPLH from $A \downarrow$ to any Y (e.g., tPHLn, $n=1$ to 4 ; or tPHLn, $n=5$ to 6 , and $t_{P L H n}, n=7$ to 8).

Figure 2. Skew Waveforms and Calculations

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

