
SCAS682A - OCTOBER 2002

- Low Jitter Clock Multiplier by x4, x6, x8. Input Frequency Range (19 MHz to 125 MHz). Supports Output Frequency From 150 MHz to 500 MHz
- Low Jitter Clock Divider by /2, /3, /4, Input Frequency Range (50 MHz to 125 MHz). **Supports Ranges of Output Frequency** From 12.5 MHz to 62.5 MHz
- 2.6 mUI Programmable Bidirectional Delay
- Typical 8.0-ps Phase Jitter (12 kHz to 20 MHz) @ 500 MHz
- Typical 2.1-ps RMS Period Jitter (Entire Frequency Band) @ 500 MHz
- One Single-Ended Input and One **Differential Output Pair**
- Output Can Drive LVPECL, LVDS, and **LVTTL**
- **Three Power Operating Modes to Minimize**
- Low Power Consumption (Typical 200 mW at 500 MHz)
- Packaged in a Shrink Small-Outline Package (DBQ)
- No External Components Required for PLL
- **Spread Spectrum Clock Tracking Ability to** Reduce EMI

- **Applications: Video Graphics, Gaming** Products, Datacom, Telecom
- Accepts LVCMOS, LVTTL Inputs for **REFCLK Terminal**
- Accepts Other Single-Ended Signal Levels at REFCLK Terminal by Programming Proper VDDREF Voltage Level (For Example, HSTL 1.5 if V_{DD}REF = 1.6 V)
- **Supports Industrial Temperature Range of** -40°C to 85°C

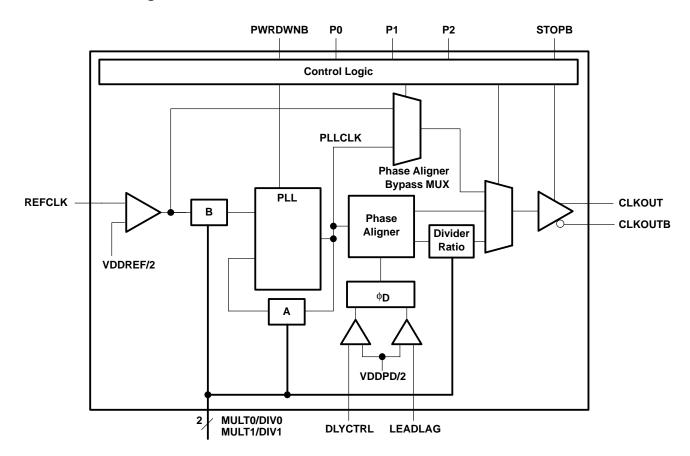
description

The CDC5801 device provides clock multiplication and division from a single-ended reference clock (REFCLK) to a differential output pair (CLKOUT/CLKOUTB). The multiply and divide terminals (MULT/DIV0:1) provide selection for frequency multiplication and division ratios, generating CLKOUT/CLOUTKB frequencies ranging from 12.5 MHz to 500 MHz with a clock input reference (REFCLK) ranging from 19 MHz to 125 MHz. Please see Table 1 and Table 2 for detail frequency support.

The implemented phase aligner provides the possibility to phase align (zero delay) between CLKOUT/CLKOUTB and REFCLK or any other CLK in the system by feeding the clocks that need to be aligned to the DLYCTRL and the LEADLAG terminals.

The phase aligner also allows the user to delay or advance the CLKOUT/CLKOUTB with steps of 2.6 mUI (unit interval). For every rising edge on the DLYCTRL terminal the output clocks are delayed by 2.6-mUl step size as long as there is low on the LEADLAG terminal. Similarly for every rising edge on the DLYCTRL terminal the output clocks are advanced by 2.6-mUI step size as long as there is high on the LEADLAG terminal. As the phase between REFCLK and CLKOUT/CLKOUTB is random after power up, the application may implement a s<mark>elf calibration routine</mark> at power up to produce a certain phase start position, before programming a fixed delay with the clock on the DLYCTRL terminal.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


SCAS682A - OCTOBER 2002

Depending on the selection of the mode terminals (P0:2), the device behaves as a multiplier (by 4, 6, or 8) with the phase aligner bypassed or as a multiplier or divider with programmable delay and phase aligner functionality. Through the select terminals (P0:2) user can also bypass the phase aligner and the PLL (test mode) and output the REFCLK directly on the CLKOUT/CLKOUTB terminals. Through P0:2 terminals the outputs could be in a high impedance state. This device has another unique capability to be able to function with a wide band of voltages on the REFCLK terminal by varying the voltage on the V_{DD} REF terminal.

The CDC5801 device is characterized for operation over free-air temperatures of -40°C to 85°C.

functional block diagram

FUNCTION TABLE†

MODE	P0	P1	P2	CLKOUT/CLKOUTB
Multiplication with programmable delay and phase alignment active‡	0	0	0	REFCLK multiplied by ratio per Table 1 selected by MULT/DIV terminals. Outputs are delayed or advanced based on DLYCTRL and LEADLAG terminal configuration.
Division with programmable delay and phase alignment active ‡	0	0	1	REFCLK divided by ratio per Table 2 selected by MULT/DIV terminals. Outputs are delayed or advanced based on DLYCTRL and LEADLAG terminal configuration.
Multiplication only mode (phase aligner bypassed) §	1	0	0	In this mode one can only multiply as per Table 1. Programmable delay capability and divider capability is deactivated. PLL is running.
Test mode	1	1	0	PLL and phase aligner both bypassed. REFCLK is directly channeled to output.
Hi-Z mode	0	1	Χ	Hi-Z

[†]X = don't care, Hi-Z = high impedance

[‡] Please see Table 4 and Table 5 for explanation for the programmability and phase alignment functions.

In this mode the DLYCTRL and LEADLAG terminals must be strapped high or low. Lowest possible jitter is achieved in this mode, but a delay of 200 ps to 2 ns expected typically from REFCLK to CLKOUT depending on the output frequency.

CDC5801 LOW JITTER CLOCK MULTIPLIER AND DIVIDER WITH PROGRAMMABLE DELAY AND PHASE ALIGNMENT SCAS682A - OCTOBER 2002

Terminal Functions

TERMINAL I/O		.,,	DESCRIPTION				
NAME	NO.	1/0	DESCRIPTION				
CLKOUT	20	0	Output clock				
CLKOUTB	18	0	Output clock (complement)				
DLYCTRL	7	I	Every rising edge on this terminal delays/advances the CLKOUT/CLKOUTB signal by 1/384th of the CLKOUT/CLKOUTB period. (e.g., for a 90 degree delay or advancement one needs to provide 96 rising edges). See Table 4.				
GND	5		GND for V _{DD} REF and V _{DD} PD				
GNDO	17, 21		GND for clock output terminals (CLKOUT, CLKOUTB)				
GNDP	4		GND for PLL				
GNDPA	8		GND for phase aligner				
LEADLAG	6	I	Decides if the output clock is delayed or advanced with respect to REFCLK. See Table 4.				
MULT0/DIV0	15	ı	PLL multiplier and divider select				
MULT1/DIV1	14	I	PLL multiplier and divider select				
NC	19		Not used				
PWRDNB	12	ı	Active low power down state, CLKOUT/CLKOUTB goes low				
P0	24	ı	Mode control, see Function Table				
P1	23	I	Mode control, see Function Table				
P2	13	ı	Mode control, see Function Table				
REFCLK	2	I	Reference input clock				
STOPB	11	I	Active low output disabler, PLL and PA still running, CLKOUT and CLKOUTB goes to a dc value as per Table 3				
$V_{DD}PA$	9	I	Supply voltage for phase aligner				
$V_{DD}PD$	10	I	Reference voltage for the DLYCTRL, LEADLAG terminals and STOPB function				
$V_{DD}REF$	1	Ī	Reference voltage for REFCLK				
$V_{DD}O$	16, 22	I	Supply voltage for the output terminals (CLKOUT, CLKOUTB)				
$V_{DD}P$	3	ı	Supply voltage for PLL				

PLL divider/multiplier selection

Table 1 and Table 2 list the supported REFCLK and BUSCLK (CLKOUT/CLKOUTB) frequencies.

Table 1. Multiplication Ratios (P0:2 = 000 or 100)

MULT0	MULT1	REFCLK (MHZ)	MULTIPLICATION RATIO	BUSCLK (MHZ)
0	0	38–125	4	152–500
0	1	25-83.3	6	150–500
1	1	19–62.5	8	152–500

Table 2. Divider Ratio (P0:2 = 001)

MULT0	MULT1	REFCLK (MHZ)	DIVISION RATIO	BUSCLK (MHZ)
0	0	100–125	2	50–62.5
1	0	75–93	3	25–31
1	1	50–62	4	12.5–15.5

Table 3. Clock Output Driver States

STATE	PWRDNB	STOPB	CLKOUT	CLKOUTB
Powerdown	0	Х	GND	GND
CLK stop	1	0	V _O , STOP	VO, STOP
Normal	1	1	As per Function Table	As per Function Table

Table 4. Programmable Delay and Phase Alignment

DLYCTRL	LEADLAG	CLKOUT AND CLKOUTB
Each rising edge [†]	1	Will be advanced by one step size (see Table 5)
Each rising edge†	0	Will be delayed by one step size (see Table 5)

[†] For every 32nd edge, there are one or two edges the phase aligner does not update. Therefore, CLKOUT phase is not updated on every 32nd edge.

Table 5. Clock Output Driver States

FUNCTIONALITY	STEP SIZE
Multiply by 4, 6, 8	CLKOUT period/384 (for example, 6.5 ps @ 400 MHz)
Divide by 2	CLKOUT period/3072 (for example, 6.5 ps @ 50 MHz)
Divide by 3	CLKOUT period/6144 (for example, 6.5 ps @ 25 MHz)
Divide by 4	CLKOUT period/12288 (for example, 6.5 ps @ 12.5 MHz)

NOTE: The frequency of the DLYCTRL terminal must always be equal or less than the frequency of the LEADLAG terminal.

SCAS682A – OCTOBER 2002

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage range, V _{DD} (see Note 1)	0.5 V to 4 V
Output voltage range, V _O , at any output terminal	
Input voltage range, V _I , at any input terminal	0.5 V to V _{DD} + 0.5 V
Continuous total power dissipation	see Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to the GND terminals.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C [‡]	T _A = 85°C POWER RATING
DBQ	1400 mW	11 mW/°C	740 mW

[‡] This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{DD} (V _{DD} P, V _{DD} PA, V _{DD} O)	3.0	3.3	3.6	V
High-level input voltage, V _{IH} (CMOS)	$0.7 \times V_{DD}$			V
Low-level input voltage, V _{IL} (CMOS)			$0.3 \times V_{DD}$	V
REFCLK low-level input voltage, V _{IL}			$0.3 \times V_{DD}REF$	V
REFCLK high-level input voltage, VIH	0.7×V _{DD} REF			V
Input signal low voltage, V _{IL} (STOPB, DLYCTRL, LEADLAG)			$0.3 \times V_{DD}PD$	V
Input signal high voltage, VIH (STOPB, DLYCTRL, LEADLAG)	$0.7 \times V_{DD}PD$			V
Input reference voltage for (REFCLK) (VDDREF)	1.235		V_{DD}	V
Input reference voltage for (DLYCTRL and LEADLAG) (VDDPD)	1.235		V_{DD}	V
High-level output current, IOH			-16	mA
Low-level output current, I _{OL}			16	mA
Operating free-air temperature, T _A	-40		85	°C

timing requirements

	MIN	MAX	UNIT
Input frequency of modulation, f _{mod} (if driven by SSC CLKIN)		33	kHz
Modulation index (nonlinear maximum 0.5%)		0.6%	
Input slew rate, SR	1	4	V/ns
Input duty cycle on REFCLK	40%	60%	
Input frequency on REFCLK	19	125	MHz
Allowable frequency on DLYCTRL		200	MHz
Allowable frequency on LEADLAG		400	MHz
Allowable duty cycle on DLYCTRL and LEADLAG	25%	75%	

SCAS682A - OCTOBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CON	DITIONS†	MIN	TYP‡	MAX	UNIT
Output voltage during mode	g CLK stop	See Figure 1		1.1		2	V
Output crossing-poin	t voltage	See Figure 1 and F	igure 4	0.5V _{DD} O-0.2		0.5V _{DD} O+0.2	V
Output voltage swing VOL)				1.7		2.9	V
Input clamp voltage		$V_{DD} = 3.0 \text{ V},$	I _I = -18 mA			-1.2	V
		See Figure 1, V _{DD}	= 3 to 3.6 V	2.0	2.6		.,
High-level output voltage		$V_{DD} = 3.0 \text{ V},$	I _{OH} = -16 mA	2.2			V
l accelaced accessors cale		See Figure 1, V _{DD}	= 3 to 3.6 V		0.3	0.6	V
Low-level output voit	age	$V_{DD} = 3.0 \text{ V},$	I _{OH} = -16 mA			0.5	V
		$V_{DD} = 3.135 \text{ V},$	V _O = 1 V	-32	-52		
High-level output cur	rent	$V_{DD} = 3.3 \text{ V},$	V _O = 1.65 V		- 51		mA
		$V_{DD} = 3.465 \text{ V},$	V _O = 3.135 V		-14.5	-21	
		$V_{DD} = 3.135 \text{ V},$	V _O = 1.95 V	43	61.5		
Low-level output cur	rent	V _{DD} = 3.3 V,	V _O = 1.65 V		65		mA
		V _{DD} = 3.465 V,	V _O = 0.4 V		25.5	36	
High-impedance-state output current		P0 = 0, P1 = 1				±10	μΑ
High-impedance-state output current during CLK stop		Stop = $0, V_O = GN$	ID or V _{DD}			±100	μΑ
		PWRDNB = 0, V _O = GND or V _{DD}		-10		100	μΑ
	REFCLK, STOPB	V _{DD} = 3.6 V,	$V_I = V_{DD}$			10	
High-level input current	PWRDNB, P0:2, MULT/ DIV0:1	V _{DD} = 3.6 V,	$V_I = V_{DD}$			10	μΑ
	REFCLK, STOPB	V _{DD} = 3.6 V,	V _I = 0			-10	
Low-level input current	PWRDNB, P0:2, MULT/ DIV0:1	V _{DD} = 3.6 V,	V _I = 0			-10	μΑ
Output impedance	High state	R _I at I _O –14.5 mA	to –16.5 mA	15	35	50	
(single ended)	Low state	R _I at I _O 14.5 mA to	16.5 mA	11	17	35	Ω
Reference current	V _{DD} REF, V _{DD} PD	V _{DD} = 3.6 V	PWRDNB = 0 PWRDNB = 1			50 0.5	μA mA
Input capacitance		V _I = V _{DD} or GND			2		pF
Output capacitance					3		pF
Supply current in power-down		REFCLK = 0 MHz	to 100 MHz,			100	μΑ
						40	mA
,	•	BUSCLK = 500 MH	·lz			70	mA
	Output voltage during mode Output crossing-point Output voltage swing VOL) Input clamp voltage High-level output voltage High-level output current Low-level output current High-impedance-state current during CLK is High-impedance-state current in power-down was a current in power-d	Output voltage during CLK stop mode Output crossing-point voltage Output voltage swing (VOH - VOL) Input clamp voltage High-level output voltage Low-level output current Low-level output current High-impedance-state output current during CLK stop High-impedance-state output current in power-down August PWRDNB, PO:2, MULT/DIV0:1 Current Coutput impedance (single ended) Input capacitance Output capacitance Output capacitance Output capacitance Output voltage VODREF, VDDREF, VDDPD Input capacitance Output capacitance Output capacitance Output capacitance Output capacitance Supply current in power-down	Output voltage during CLK stop mode Output crossing-point voltage Output voltage swing (VOH - VOL) Input clamp voltage High-level output voltage Low-level output current Figh-impedance-state output current during CLK stop High-level input current Are FECLK, STOPB High-level input current Coutput impedance (Single ended) Coutput capacitance Output capacitance Output current in power-down state Output capacitance Output capacitance See Figure 1, VDD VDD = 3.0 V, See Figure 1, VDD VDD = 3.0 V, VDD = 3.0 V, VDD = 3.135 V, VDD = 3.465 V, VDD = 3.3 V, VDD = 3.465 V, VDD = 3.465 V, VDD = 3.465 V, VDD = 3.465 V, VDD = 3.6 V, VDD =	Output voltage during CLK stop mode See Figure 1 Output crossing-point voltage See Figure 1 and Figure 4 Output voltage swing (VOH − VOL) See Figure 1 Input clamp voltage VDD = 3.0 V, I₁ = −18 mA High-level output voltage See Figure 1, VDD = 3 to 3.6 V Low-level output voltage See Figure 1, VDD = 3 to 3.6 V High-level output current VDD = 3.0 V, IOH = −16 mA VDD = 3.0 V, VDD = 3.135 V, VO = 1 V VDD = 3.3 V, VO = 1.65 V VDD = 3.3 SV, VO = 1.85 V VDD = 3.3 SV, VO = 1.65 V VDD = 3.3 V, VO = 1.65 V VDD = 3.3 V, VO = 1.95 V VDD = 3.3 V, VO = 1.65 V VDD = 3.465 V, VO = 0.4 V High-impedance-state output current during CLK stop Stop = 0, VO = GND or VDD High-impedance-state output current in power-down state VDD = 3.6 V, VI = VDD High-level input current in power-down VDD = 3.6 V, VI = VDD Low-level input current in power-down PWRDNB, PO:2, MULT/ DIV0:1 NDD = 3.6 V, VI = 0 VI = VDD Cutput impedance (single	Output voltage during CLK stop mode See Figure 1 1.1 Output crossing-point voltage output voltage swing (VOH − VOL) See Figure 1 and Figure 4 0.5VDDO-0.2 Output voltage swing (VOH − VOL) See Figure 1 1.7 Input clamp voltage VDD = 3.0 V, Ipl = -18 mA 1.7 High-level output voltage See Figure 1, VDD = 3 to 3.6 V 2.0 Low-level output current See Figure 1, VDD = 3 to 3.6 V 2.0 VDD = 3.0 V, Ipl = -16 mA 2.2 VDD = 3.46 V, VO = 1.65 V VDD = 3.35 V, VO = 1.65 V VDD = 3.33 V, VO = 1.65 V VDD = 3.35 V, VO = 1.95 V VDD = 3.35 V, VO = 1.65 V VDD = 3.35 V, VO = 1.65 V VDD = 3.35 V, VO = 1.65 V VDD = 3.465 V, VO = 1.65 V VDD = 3.35 V, VO = 1.65 V VDD = 3.465 V, VO = 1.65 V VDD = 3.465 V, VO = 0.4 V VDD = 3.6 V, VO = 0.4 V High-impedance-state output current during CLK stop VDD = 0. P1 = 1 High-level input current in power-down state VDD = 3.6 V, VI = VDD VDD = 3.6 V, VI = VDD VDD VDD = 3.6 V, VI = VDD VDD Low-level input current imput current	Output voltage during CLK stop mode See Figure 1 1.1 Output crossing-point voltage See Figure 1 and Figure 4 0.5VppDO-0.2 Output voltage swing (VOH − VOL) See Figure 1 1.7 Input clamp voltage VpD = 3.0 V. Ig = 18 mA 1.7 See Figure 1, VpD = 3 to 3.6 V VpD = 3.0 V. Ig = 16 mA 2.2 2.6 Low-level output voltage See Figure 1, VpD = 3 to 3.6 V VpD = 3.0 V. Ig = 16 mA 2.2 0.3 High-level output current YpD = 3.135 V, VpD = 3.0 S.6 V VpD = 3.35 V, VpD = 1.65 V VpD = 3.35 V, VpD = 1.65 V VpD = 3.465 V, VpD = 3.35 V, VpD = 1.65 V VpD = 3.35 V, VpD = 1.65 V VpD = 3.465 V, VpD = 3.6 V, VpD =	Dutput voltage during CLK stop mode

[†] V_{DD} refers to any of the following; $V_{DD}PA$, $V_{DD}PD$, $V_{DD}REF$, $V_{DD}O$, and $V_{DD}P$ ‡ All typical values are at $V_{DD}=3.3$ V, $T_{A}=25^{\circ}C$.

CDC5801 LOW JITTER CLOCK MULTIPLIER AND DIVIDER WITH PROGRAMMABLE DELAY AND PHASE ALIGNMENT SCAS682A - OCTOBER 2002

jitter specification over recommended operating free-air temperature range and $V_{\mbox{\scriptsize CC}}$ (unless otherwise noted)

PARAMETER	CLKOUT	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
t(jitter) (Multiplication only mode. Phase alignment and programmable delay features are not selected (PA bypass). See Figure 2.)	155 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		6.0 40 50 27 27		ps
	200 MHz	Period RMS (1Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Phase jitter (accumulated, 50 kHz to 80 MHz) Cycle-to-cycle (+) Cycle-to-cycle (–)		5.5 36 36 36 23 23		ps
	312 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Phase jitter (accumulated, 50 kHz to 80 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		3.0 20 18 18 17		ps
	400 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Phase jitter (accumulated, 50 kHz to 80 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		2.3 17 12 12 15 15		ps
	500 MHz	Period RMS (1Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Phase jitter (accumulated, 50 kHz to 80 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		2.1 16 8 8 14 14		ps
	155 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		9.0 70 50 50 50		ps
[†] (jitter)	200 MHz	Period RMS (1Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Phase jitter (accumulated, 50 kHz to 80 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		7.0 55 36 36 40 40		ps
(Multiplication with phase alignment and programmable delay features selected. See Figure 2.)	312 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Phase jitter (accumulated, 50 kHz to 80 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		4.0 35 18 18 30 30		ps
	400 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Phase jitter (accumulated, 50 kHz to 80 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		3.1 27 13 13 25 25		ps

[†] All typical values are at $V_{DD} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SCAS682A - OCTOBER 2002

jitter specification over recommended operating free-air temperature range and V_{CC} (unless otherwise noted) (continued)

PARAMETE	R	CLKOUT	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
^t (jitter) (Multiplication with phase alignment and programmable delay features selected. See Figure 2.)		500 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Phase jitter (accumulated, 50 kHz to 80 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)	2.9 24 9 9 20 20			ps
	MULT0:1 = 11 (Divider ratio = 4)	12.5 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Cycle-to-cycle (+) Cycle-to-cycle (-)		12.0 75 55 55		ps
		15.5 MHz	Period RMS (1Σ jitter, full frequency band) Period p-p Cycle-to-cycle (+) Cycle-to-cycle (–)		8.0 50 38 38		ps
^t (jitter) (Divider mode with	MULT0:1 = 10 (Divider ratio = 3)	25.0 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Cycle-to-cycle (+) Cycle-to-cycle (-)		7.5 50 35 35		ps
phase aligner not active: DLYCTRL =LEADLAG = 0 or 1. See Figure 2.)		31.0 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Cycle-to-cycle (+) Cycle-to-cycle (-)		5.5 30 23 23		ps
	MULT0:1 = 00	50.0 MHz	Period RMS (1Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		8.0 40 12 30 30		ps
	(Divider ratio = 2)	62.5 MHz	Period RMS (1Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		5.5 28 9 24 24		ps
		12.5 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Cycle-to-cycle (+) Cycle-to-cycle (-)		12.5 80 55 55		ps
t(jitter) (Divider mode with phase alignment and		15.5 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Cycle-to-cycle (+) Cycle-to-cycle (-)		8.5 55 38 38		ps
programmable delay features selected. See Figure 2.)	MULT0:1 = 10 (Divider ratio = 3)	25.0 MHz	Period RMS (1Σ jitter, full frequency band) Period p-p Cycle-to-cycle (+) Cycle-to-cycle (–)		10.0 60 35 35		ps
		31.0 MHz	Period RMS (1Σ jitter, full frequency band) Period p-p Cycle-to-cycle (+) Cycle-to-cycle (-)		7.0 40 23 23		ps

SCAS682A - OCTOBER 2002

jitter specification over recommended operating free-air temperature range and V_{CC} (unless otherwise noted) (continued)

PARAMETER		CLKOUT	TEST CONDITIONS		TYP	MAX	UNIT
t(jitter) (Divider mode with phase alignment and	MULT0:1 = 00	50.0 MHz	Period RMS (1Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		9.0 50 13 35 35		ps
programmable delay features selected. See Figure 2.)	(Divider ratio = 2)	62.5 MHz	Period RMS (1 Σ jitter, full frequency band) Period p-p Phase jitter (accumulated, 12 kHz to 20 MHz) Cycle-to-cycle (+) Cycle-to-cycle (-)		6.5 30 10 26 26		ps

 $^{^{\}dagger}$ All typical values are at V_DD = 3.3 V, T_A = 25°C.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYPT MAX	UNIT
t(DC)	Output duty cycle	See Figure 3	45%	55%	
t _r , t _f	Output rise and fall times (measured at 20%–80% of output voltage)	See Figure 5 and Figure 1	150	350	ps

 $[\]dagger$ All typical values are at $V_{DD} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

state transition latency specifications

	PARAMETER	FROM	то	TEST CONDITIONS	MIN	түр†	MAX	UNIT
^t (powerup)	Delay time, PWRDNB↑ to CLKOUT/ CLKOUTB output settled (excluding ^t (DISTLOCK))	Powerdown	Normal	See Figure 6			3	ms
	Delay time, PWRDNB↑ to internal PLL and clock are on and settled						3	
	Delay time, power up to CLKOUT/CLKOUTB output settled	V _{DD}	Normal	See Figure 6			3	
t(VDDpowerup)	Delay time, power up to internal PLL and clock are on and settled						3	ms
^t (MULT)	MULT0 and MULT1 change to CLKOUT/ CLKOUTB output resettled (excluding ^t (DISTLOCK))	Normal	Normal	See Figure 7			1	ms
t(CLKON)	STOPB [↑] to CLKOUT/CLKOUTB glitch-free clock edges	CLK Stop	Normal	See Figure 8			10	ns
t(CLKSETL)	STOPB [↑] to CLKOUT/CLKOUTB output settled to within 50 ps of the phase before STOPB was disabled	CLK Stop	Normal	See Figure 8			20	cycles
t(CLKOFF)	STOPB ↓ to CLKOUT/CLKOUTB output disabled	Normal	CLK Stop	See Figure 8			5	ns
t(powerdown)	Delay time, PWRDNB↓ to the device in the power-down mode	Normal	Power- down	See Figure 6			1	ms
^t (STOP)	Maximum time in CLKSTOP (STOPB = 0) before reentering normal mode (STOPB = 1)	STOPB	Normal	See Figure 8			100	μs
t(ON)	Minimum time in normal mode (STOPB = 1) before reentering CLKSTOP (STOPB = 0)	Normal	CLK stop	See Figure 8	100	_	_	ms

[†] All typical values are at $V_{DD} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

PARAMETER MEASUREMENT INFORMATION

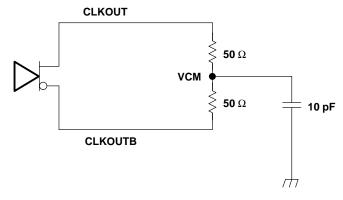


Figure 1. Test Load and Voltage Definitions ($V_{O(STOP)}$, V_{OX} , V_{OH} , V_{OL})

PARAMETER MEASUREMENT INFORMATION

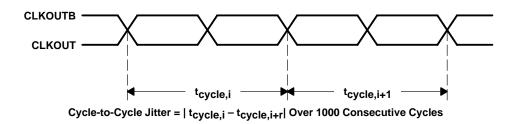


Figure 2. Cycle-to-Cycle Jitter

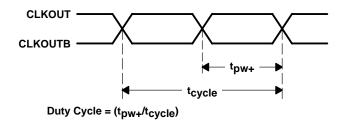


Figure 3. Output Duty Cycle

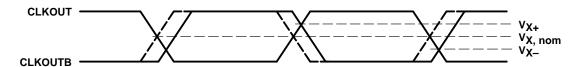
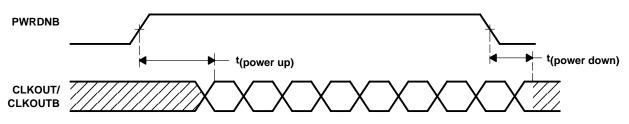
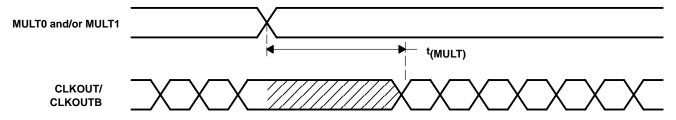
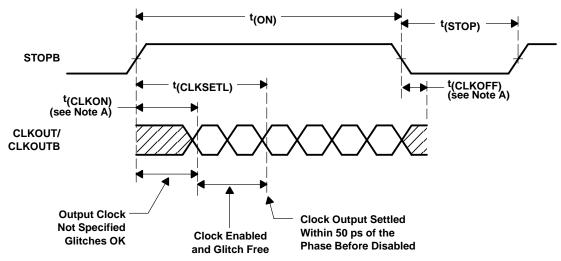



Figure 4. Crossing-Point Voltage


Figure 5. Voltage Waveforms

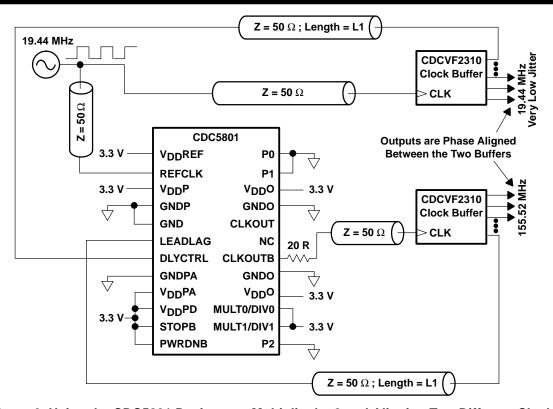

Figure 6. PWRDNB Transition Timings

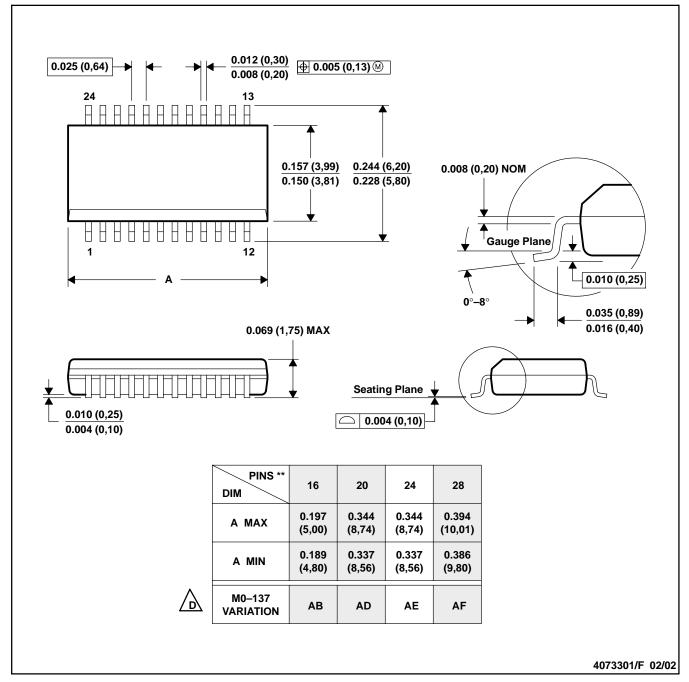
PARAMETER MEASUREMENT INFORMATION

Figure 7. MULT Transition Timings

NOTE A: $V_{ref} = V_{O} \pm 200 \text{ mV}$

Figure 8. STOPB Transition Timings




Figure 9. Using the CDC5801 Device as a Multiplier by 8 and Aligning Two Different Clocks

SCAS682A - OCTOBER 2002

MECHANICAL DATA

DBQ (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-137.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265