
查询CDCLVD110供应商

捷多邦,专业PCB打样工厂,24小时加急出货

CDCLVD110 PROGRAMMABLE LOW-VOLTAGE 1:10 LVDS CLOCK DRIVER

SCAS684 - SEPTEMBER 2002

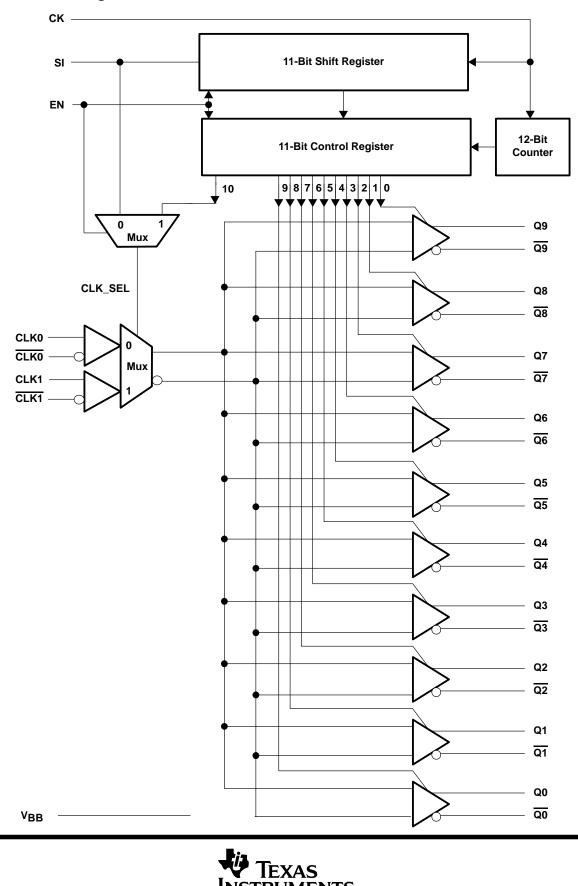
- Low-Output Skew <30 ps (Typical) for Clock-Distribution applications
- Distributes One Differential Clock Input to 10 LVDS Differential Clock Outputs
- V_{CC} range 2.5 V ±5%
- Typical Signaling Rate Capability of Up to 1.1 GHz
- Configurable Register (SI/CK) Individually Enables Disables Outputs, Selectable CLK0, CLK0 or CLK1, CLK1 Inputs
- Full Rail-to-Rail Common-Mode Input
 Range
- Receiver Input Threshold ±100 mV
- Available in 32-Pin TQFP Package
- Fail-Safe I/O-Pins for V_{DD} = 0 V (Power Down)

description

The CDCLVD110 clock driver distributes one pair of differential LVDS clock inputs (either CLK0 or CLK1) to 10 pairs of differential clock outputs (Q0, Q9) with minimum skew for clock distribution. The CDCLVD110 is specifically designed for driving $50-\Omega$ transmission lines.

When the control enable is high (EN = 1), the 10 differential outputs are programmable in that each output can be individually enabled/disabled (3-stated) according to the first 10 bits loaded into the shift register. Once the shift register is loaded, the last bit selects either CLK0 or CLK1 as the clock input. However, when EN = 0, the outputs are not programmable and all outputs are enabled.

The CDCLVD110 is characterized for operation from -40°C to 85°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

CDCLVD110 PROGRAMMABLE LOW-VOLTAGE 1:10 LVDS CLOCK DRIVER SCAS684 - SEPTEMBER 2002

functional block diagram

CDCLVD110 PROGRAMMABLE LOW-VOLTAGE 1:10 LVDS CLOCK DRIVER

Terminal Functions

	TERMINAL	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
СК	1	Ι	Control register input clock, features a 120-k Ω pullup resistor
SI	2	I	Control register serial input/CLK Select, features a 120-k Ω pulldown resistor
CLK0	3	Ι	Complementary differential input, LVDS
CLK0	4	Ι	True differential input, LVDS
V _{BB}	5	0	Reference voltage output
CLK1	6	Ι	Complementary differential input, LVDS
CLK1	7	Ι	True differential input, LVDS
EN	8	I	Control enable (for programmability), features a 120-k Ω pulldown resistor, input
VSS	9, 25		Device ground
V _{DD}	16, 32		Supply voltage
Q [9:0]	11, 13, 15, 18, 20, 22, 24, 27, 29, 31	0	Clock outputs, these outputs provide low-skew copies of CLKIN
Q[9:0]	10, 12, 14, 17, 19, 21,23, 26, 28, 30	0	Complementary clock outputs, these outputs provide low-skew copies of CLKIN

absolute maximum ratings[†]

Supply voltage, V _{DD}	–0.3 V to 2.8 V
Input voltage, V ₁	
Driver short circuit current, Qn, Qn, IOSD	Continuous
Electrostatic discharge (HBM 1.5 kΩ, 100 pF), ESD	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}	2.375	2.5	2.625	V
Receiver common-mode input voltage, VIC	0.5 V _{ID}		$V_{DD} - 0.5 V_{ID} $	V
Operating free-air temperature, T _A	-40		85	°C

CDCLVD110 PROGRAMMABLE LOW-VOLTAGE 1:10 LVDS CLOCK DRIVER SCAS684 – SEPTEMBER 2002

driver electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IVODI	Differential output voltage	R _L = 100 Ω	250	450	600	mV
ΔV_{OD}	V _{OD} magnitude change				50	mV
VOS	Offset voltage	-40°C to 85°C	0.95	1.2	1.45	V
ΔV_{OS}	V _{OS} magnitude change				350	mV
	Output all and all and the set	VO = 0 V			-20	
los	Output short circuit current	VOD = 0 V			20	mA
V _{BB}	Reference output voltage	$V_{DD} = 2.5 \text{ V}, \text{ I}_{BB} = -100 \mu\text{A}$	1.15	1.25	1.35	V
CO	Output capacitance	$V_{O} = V_{DD}$ or GND		3		pF

receiver electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIDH	Input threshold high				100	mV
VIDL	Input threshold low		-100			mV
IVIDI	Input differential voltage		200			mV
Iн		$V_I = V_{DD}$	_			•
۱ _{IL}	Input current, CLK0/CLK0, CLK1/CLK1	V _I = 0 V	-5		5	μA
Cl	Input capacitance	$V_I = V_{DD}$ or GND		3		pF

supply current electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
		Full loaded	All outputs enabled and loaded, RL = 100 Ω,f = 0 Hz			130	
DD	DD Supply current No load		Outputs enabled, no output load, f = 0 Hz			35	mA
IDDZ		3-State	All outputs 3-state by control logic, f = 0 Hz			35	

LVDS—switching characteristics over recommended operating free-air temperature range, V_{DD} = 2.5 V ±5%

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	ТҮР	МАХ	UNIT
^t PLH	Propagation delay low-to-high	CLK0, <u>CLK0</u> CLK1, CLK1	Qn, Qn		2	3	ns
^t PHL	Propagation delay high-to-low	CLK0, <u>CLK0</u> CLK1, CLK1	Qn, Qn		2	3	ns
^t duty	Duty cycle	CLK0, <u>CLK0</u> CLK1, CLK1	Qn, <mark>Qn</mark>	45%		55%	
^t sk(o)	Output skew		Any Qn, <mark>Qn</mark>		30		ps
^t sk(p)	Pulse skew		Any Qn, Qn			50	ps
^t sk(pp)	Part-to-part skew		Any Qn, <mark>Q</mark> n			600	ps
t _r	Output rise time, 20% to 80%, RL = 100 Ω , CL = 5 pF		Any Qn, <mark>Q</mark> n			350	ps
t _f	Output fall time, 20% to 80%, RL = 100 Ω , CL = 5 pF		Any Qn, Qn			350	ps
fclk	Max input frequency	CLK0, <u>CLK0</u> CLK1, CLK1	Any Qn, <mark>Qn</mark>	900	1100		MHz

control register characteristics over recommended operating free-air temperature range, V_{DD} = 2.5 V $\pm 5\%$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fMAX	Maximum frequency of shift register		100	150		MHz
t _{su}	Setup time, clock to SI				2	ns
th	Hold time, clock to SI				1.5	ns
^t removal	Removal time, enable to clock				1.5	ns
tw	Clock pulse width, minimum		3			ns
VIH	Logic input high	V _{DD} = 2.5 V	2			V
VIL	Logic input low	V _{DD} = 2.5 V			0.8	V
	Input current, CK pin		-5		5	
ΊΗ	Input current, SI and EN pins	$V_{I} = V_{DD}$	10		30	μA
	Input current, CK pin		-10		-30	
ΊL	Input current, SI and EN pins	V _I = GND	-5		5	μA

specification of control register

The CDCLVD110 is provided with an 11-bit, serial-in shift register and an 11-bit control register. The control Register enables/disables each output clock and selects either CLK0 or CLK1 as the input clock. The CDCLVD110 has two modes of operation:

Programmable Mode (EN=1)

The shift register utilizes a serial input (SI) and a clock input (CK). Once the shift register is loaded with 11 clock pulses, the twelfth clock pulse loads the control register. The first bit (bit 0) on SI enables the Q9, $\overline{Q9}$ output pair, and the tenth bit (bit 9) enables the Q0, $\overline{Q0}$ pair. The eleventh bit (bit 10) on SI selects either CLK0 or CLK1 as the input clock; a bit value of 0 selects CLK0, whereas a bit value of 1 selects CLK1. To restart the control register configuration, a reset of the state machine must be done with a clock pulse on CK (shift register clock input) and EN set to low. The control register can be configured only once after each reset.

Standard Mode (EN=0)

In this mode, the CDCLVD110 is not programmable and all the clock outputs are enabled. The clock input (CLK0 or CLK1) is selected with the SI pin, as is shown in the table entitled control register.

state-machine inputs

EN	SI	СК	OUTPUT
L	L	Х	All outputs enabled, CLK0 selected, control register disabled, default state
L	Н	Х	All outputs enabled, CLK1 selected, control register disabled
Н	L	\uparrow	First stage stores L, other stage stores data of previous stage
Н	Н		First stage stores H, other stage stores data of previous stage
L	Х		Reset of state machine, shift and control registers

control register

BIT 10	BITS [0–9]	Q _N [0–9]
L	Н	CLK0
Н	Н	CLK1
Х	L	Outputs disabled

CDCLVD110 PROGRAMMABLE LOW-VOLTAGE 1:10 LVDS CLOCK DRIVER SCAS684 – SEPTEMBER 2002

serial input (SI) sequence

BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
CLK_SEL	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9

truth table for control logic

СК	EN	SI	CLK0	CLK0	CLK1	CLK1	Q (0–9)	Q(0-9)	
L	L	L	L	Н	Х	Х	L	Н	
L	L	L	Н	L	Х	Х	н	L	
L	L	L	Open	Open	Х	Х	L	Н	
L	L	н	Х	Х	L	н	L	Н	
L	L	н	Х	Х	н	L	н	L	
L	L	н	Х	Х	Open	Open	L	Н	
All output	s enabled	X = Don't care							

APPLICATION INFORMATION

Fail-Safe information:

For $V_{DD} = 0$ V (power-down mode) the CDCLVD110 has fail-safe input and output pins. In power-on mode, fail-safe biasing at input pins can be accomplished with a 10-k Ω pullup resistor from CLK0/CLK1 to VDD and a 10-k Ω pulldown resistor from CLK0/CLK1 to GND.

LVDS Receiver Input termination:

The LVDS receiver inputs need to have $100-\Omega$ termination resistors placed as close as possible across the input pins.


Control Inputs termination:

No external termination is required. The CK control input has an internal 120-k Ω pullup resistor while SI– and EN– control inputs each have an internal 120-k Ω pulldown resistor. If the control pins are left open per the default, all outputs are enabled, CLK0, CLK0 is selected, and the control register is disabled.

CDCLVD110 **PROGRAMMABLE LOW-VOLTAGE 1:10 LVDS CLOCK DRIVER**

SCAS684 - SEPTEMBER 2002

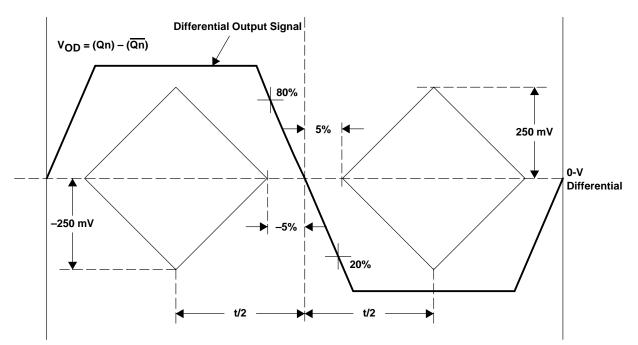

PARAMETER MEASUREMENT INFORMATION

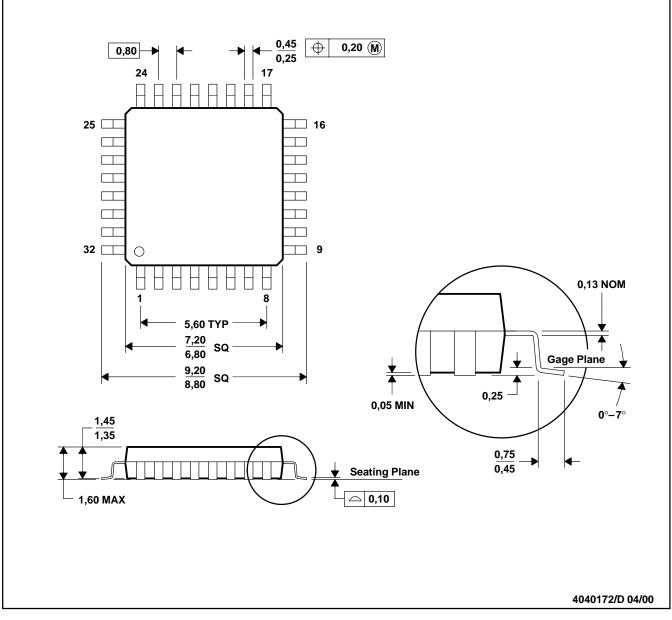
Figure 1. Waveforms for Calculation of $t_{sk(o)}$ and $t_{sk(pp)}$

- NOTES: A. Output skew, $t_{sk(0)}$, is calculated as the greater of: The difference between the fastest and the slowest t_{PLHn} (n = 1, 2,...10)
 - The difference between the fastest and the slowest t_{PHLn} (n = 1, 2,...10)
 - B. Part-to-part skew, t_{sk(pp)}, is calculated as the greater of:
 - The difference between the fastest and the slowest tpLHn (n = 1, 2,...10) across multiple devices - The difference between the fastest and the slowest t_{PHLn} (n = 1, 2,...10) across multiple devices
 - C. Pulse skew, t_{sk(p)}, is calculated as the magnitude of the absolute time difference between the high-to-low (t_{PHL}) and the low-to-high (tpLH) propagation delays when a single switching input causes one or more outputs to switch, $t_{sk(p)} = |t_{PHL} - t_{PLH}|$. Pulse skew is sometimes referred to as pulse width distortion or duty cycle skew.

CDCLVD110 PROGRAMMABLE LOW-VOLTAGE 1:10 LVDS CLOCK DRIVER SCAS684 - SEPTEMBER 2002

PARAMETER MEASUREMENT INFORMATION

Figure 2. Test Criteria for f_{Clk} , Duty Cycle, t_r , t_f , V_{OD}



CDCLVD110 PROGRAMMABLE LOW-VOLTAGE 1:10 LVDS CLOCK DRIVER SCAS684 – SEPTEMBER 2002

MECHANICAL DATA

VF (S-PQFP-G32)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated