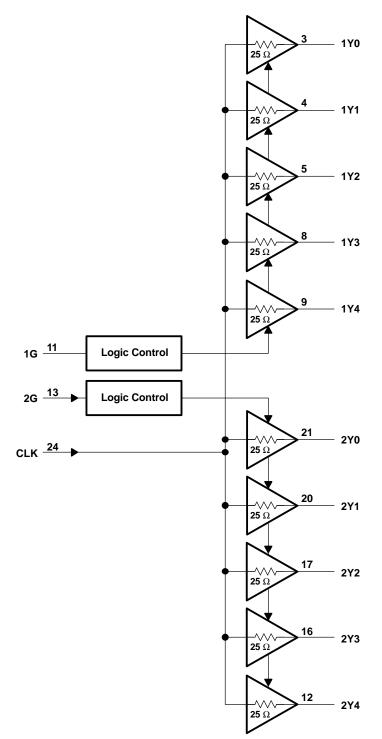


2.5-V TO 3.3-V HIGH-PERFORMANCE CLOCK BUFFER

- High-Performance 1:10 Clock Driver for General-Purpose Applications. Operates up to 200 MHz at V_{DD} 3.3 V
- Pin-to-Pin Skew < 100 ps at V_{DD} 3.3 V
- V_{DD} Range: 2.3 V to 3.6 V
- Operating Temperature Range –40°C to 85°C
- Output Enable Glitch Suppression
- Distributes One Clock Input to Two Banks of Five Outputs
- 25-Ω On-Chip Series Damping Resistors
- Packaged in 24-Pin TSSOP

DESCRIPTION

The CDCVF2310 is a high-performance, low-skew clock buffer that operates up to 200 MHz. Two banks of five outputs each provide low-skew copies of CLK. After power up, the default state of the outputs is low regardless of the state of the control pins. For normal operation, the outputs of bank 1Y[0:4] or 2Y[0:4] can be placed in a low state when the control pins (1G or 2G, respectively) are held low and a negative clock edge is detected on the CLK input. The outputs of bank 1Y[0:4] or 2Y[0:4] can be switched into the buffer mode when the control pins (1G and 2G) are held high and a negative clock edge is detected on the CLK input. The device operates in a 2.5-V and 3.3-V environment. The built-in output enable glitch suppression ensures a synchronized output enable sequence to distribute full period clock signals.


The CDCVF2310 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas

FUNCTIONAL BLOCK DIAGRAM

FUNCTION TABLE

INPUT			OUTPUT		
1G	2G	CLK	1Y[0:4]	2Y[0:4]	
L	L	\downarrow	L	L	
Н	L	\downarrow	CLK ⁽¹⁾	L	
L	н	\downarrow	L	CLK ⁽¹⁾	
Н	Н	\downarrow	CLK ⁽¹⁾	CLK ⁽¹⁾	

(1) After detecting one negative edge on the CLK input, the output follows the input CLK if the control pin is held high.

Terminal Functions

TERMINAL		I/O	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
1G	11	Ι	Output enable control for 1Y[0:4] outputs. This output enable is active-high, meaning the 1Y[0:4] clock outputs follow the input clock (CLK) if this pin is logic high.	
2G	13	I	Output enable control for 2Y[0:4] outputs. This output enable is active-high, meaning the 2Y[0:4] clock outputs follow the input clock (CLK) if this pin is logic high.	
1Y[0:4]	3, 4, 5, 8, 9	0	Buffered output clocks	
2Y[0:4]	21, 20, 17, 16, 12	0	Buffered output clocks	
CLK	24	I	Input reference frequency	
GND	1, 6, 7, 18, 19		Ground	
V _{DD}	2, 10, 14, 15, 22, 23		DC power supply, 2.3 V – 3.6 V	

DETAILED DESCRIPTION

Output Enable Glitch Suppression Circuit

The purpose of the glitch suppression circuitry is to ensure the output enable sequence is synchronized with the clock input such that the output buffer is enabled or disabled on the next full period of the input clock (negative edge triggered by the input clock) (see Figure 1).

The G input must fulfill the timing requirements (t_{su}, t_h) according to the *Switching Characteristics* table for predictable operation.

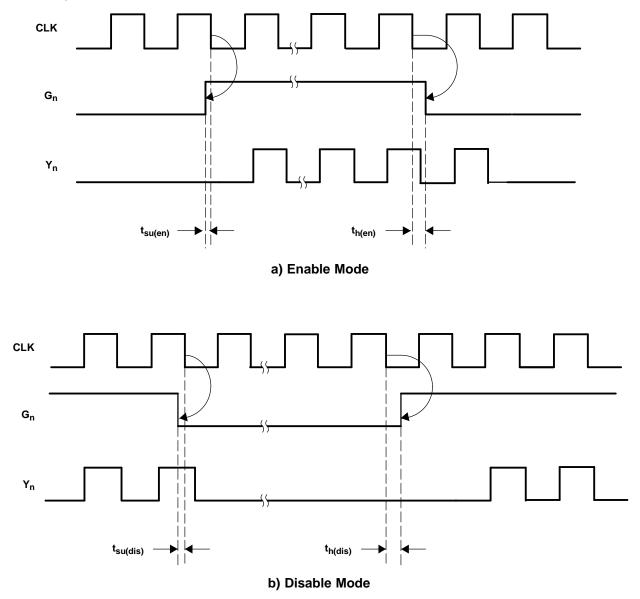


Figure 1. Enable and Disable Mode Relative to CLK \downarrow

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

Supply voltage range, V _{DD}	–0.5 V to 4.6 V
Input voltage range, V ₁ ⁽²⁾⁽³⁾	–0.5 V to V _{DD} + 0.5 V
Output voltage range, $V_0^{(2)(3)}$	–0.5 V to V _{DD} + 0.5 V
Input clamp current, I_{IK} (V _I < 0 or V _I > V _{DD})	±50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{DD}$)	±50 mA
Continuous total output current, $I_O (V_O = 0 \text{ to } V_{DD})$	±50 mA
Package thermal impedance, $\theta_{JA}^{(4)}$: PW package	120°C/W
Storage temperature range T _{stg}	−65°C to 150°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(3) This value is limited to 4.6 V maximum.

(4) The package thermal impedance is calculated in accordance with JESD 51.

RECOMMENDED OPERATING CONDITIONS ⁽¹⁾

		MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}		2.3	2.5		V
			3.3	3.6	v
Low-level input voltage, V _{II}	$V_{DD} = 3 V$ to 3.6 V			0.8	V
	$V_{DD} = 2.3 \text{ V to } 2.7 \text{ V}$			0.7	v
High lovel input veltage V	$V_{DD} = 3 V \text{ to } 3.6 V$	2			V
High-level input voltage, V _{IH}	$V_{DD} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7			v
Input voltage, V _I		0		V_{DD}	V
High lovel output ourrest	$V_{DD} = 3 V \text{ to } 3.6 V$			12	mA
High-level output current, I _{OH}	$V_{DD} = 2.3 \text{ V to } 2.7 \text{ V}$			6	ША
	$V_{DD} = 3 V \text{ to } 3.6 V$			12	~ ^
Low-level output current, I _{OL}	V _{DD} = 2.3 V to 2.7 V			6	mA
Operating free-air temperature, T_{μ}		-40		85	°C

(1) Unused inputs must be held high or low to prevent them from floating.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ⁽¹⁾	MAX	UNIT
VIK	Input voltage	$V_{DD} = 3 V,$	I _I = -18 mA			-1.2	V
I _I	Input current	$V_{I} = 0 V \text{ or } V_{DD}$				±5	μA
I _{DD} ⁽²⁾	Static device current	CLK = 0 V or V _{DD} ,	$I_0 = 0 \text{ mA}$			80	μA
CI	Input capacitance	V _{DD} = 2.3 V to 3.6 V,	$V_{I} = 0 V \text{ or } V_{DD}$		2.5		pF
Co	Output capacitance	V _{DD} = 2.3 V to 3.6 V,	$V_{I} = 0 V \text{ or } V_{DD}$		2.8		pF

(1) All typical values are at respective nominal V_{DD} .

(2) For I_{CC} over frequency, see Figure 6.

V_{DD} = 3.3 V ± 0.3 V

PARAMETER		TEST	TEST CONDITIONS		TYP ⁽¹⁾	MAX	UNIT
		V _{DD} = min to max,	I _{OH} = −100 μA	V _{DD} – 0.2			
V _{OH}	High-level output voltage	V - 2 V	I _{OH} = -12 mA	2.1			V
		$V_{DD} = 3 V$	I _{OH} =6 mA	2.4			
	V _{OL} Low-level output voltage	V _{DD} = min to max,	I _{OL} = −100 μA			0.2	
V _{OL}		V _{DD} = 3 V	I _{OL} = 12 mA			0.8	V
			I _{OL} = 6 mA			0.55	
		V _{DD} = 3 V,	V _O = 1 V	-28			
I _{OH}	High-level output current	V _{DD} = 3.3 V,	V _O = 1.65 V		-36		mA
		V _{DD} = 3.6 V,	V _O = 3.135 V			-14	
I _{OL}		V _{DD} = 3 V,	V _O = 1.95 V	28			
	Low-level output current	V _{DD} = 3.3 V,	V _O = 1.65 V		36		mA
		V _{DD} = 3.6 V,	V _O = 0.4 V			14	

(1) All typical values are at respective nominal V_{DD} .

$V_{\text{DD}} = 2.5 \text{ V} \pm 0.2 \text{ V}$

PARAMETER		TEST	TEST CONDITIONS		TYP ⁽¹⁾	MAX	UNIT
N	High lovel output veltage	V _{DD} = min to max,	I _{OH} = −100 μA	V _{DD} - 0.2			V
V _{OH}	High-level output voltage	V _{DD} = 2.3 V	I _{OH} = -6 mA	1.8			v
V	Low lovel output veltage	V _{DD} = min to max,	I _{OL} = 100 μA			0.2	V
VOL	V _{OL} Low-level output voltage	V _{DD} = 2.3 V	I _{OL} = 6 mA			0.55	v
		V _{DD} = 2.3 V,	$V_0 = 1 V$	-17			
I _{OH}	High-level output current	V _{DD} = 2.5 V,	V _O = 1.25 V		-25		mA
		V _{DD} = 2.7 V,	V _O = 2.375 V			-10	
		V _{DD} = 2.3 V,	V _O = 1.2 V	17			
I _{OL}	Low-level output current	V _{DD} = 2.5 V,	V _O = 1.25 V		25		mA
		V _{DD} = 2.7 V,	$V_{O} = 0.3 V$			10	

(1) All typical values are at respective nominal $V_{\text{DD}}.$

TIMING REQUIREMENTS

over recommended ranges of supply voltage and operating free-air temperature

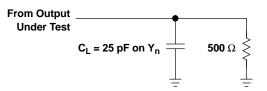
			MIN	NOM MA	xι	UNIT
f _{clk} Clock frequency	Clock frequency	$V_{DD} = 3 V \text{ to } 3.6 V$	0	20	0	MHz
	$V_{DD} = 2.3 \text{ V to } 2.7 \text{ V}$	0	17	'0 [']		

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

V_{DD} = 3.3 V ±0.3 V (SEE FIGURE 2)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} t _{PHL}	CLK to Yn	f = 0 MHz to 200 MHz For circuit load, see Figure 2.	1.3		2.8	ns
t _{sk(o)}	Output skew (Ym to Yn) ⁽¹⁾ (see Figure 4)				100	ps
t _{sk(p)}	Pulse skew (see Figure 5)				250	ps
t _{sk(pp)}	Part-to-part skew				500	ps
t _r	Rise time (see Figure 3)	$V_{O} = 0.4 \text{ V} \text{ to } 2 \text{ V}$	0.7		2	V/ns
t _f	Fall time (see Figure 3)	$V_0 = 2 V \text{ to } 0.4 V$	0.7		2	V/ns
t _{su(en)}	Enable setup time, G_high before CLK \downarrow		0.1			ns
t _{su(dis)}	Disable setup time, G_low before CLK \downarrow		0.1			ns
t _{h(en)}	Enable hold time, G_high after CLK \downarrow		0.4			ns
t _{h(dis)}	Disable hold time, G_low after CLK \downarrow		0.4			ns


(1) The $t_{sk(o)}$ specification is only valid for equal loading of all outputs.

V_{DD} = 2.5 V ± 0.2 V (SEE FIGURE 2)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	CLK to Yn	f = 0 MHz to 170 MHz For circuit load, see Figure 2.	1.5		3.5	ns
t _{PHL} t _{sk(o)}	Output skew (Ym to Yn) ⁽¹⁾ (see Figure 4)				170	ps
t _{sk(p)}	Pulse skew (see Figure 5)				400	ps
t _{sk(pp)}	Part-to-part skew				600	ps
t _r	Rise time (see Figure 3)	$V_{O} = 0.4 \text{ V to } 1.7 \text{ V}$	0.5		1.4	V/ns
t _f	Fall time (see Figure 3)	V _O = 1.7 V to 0.4 V	0.5		1.4	V/ns
t _{su(en)}	Enable setup time, G_high before CLK \downarrow		0.1			ns
t _{su(dis)}	Disable setup time, G_low before CLK \downarrow		0.1			ns
t _{h(en)}	Enable hold time, G_high after CLK \downarrow		0.4			ns
t _{h(dis)}	Disable hold time, G_low after CLK \downarrow		0.4	•		ns

(1) The $t_{sk(o)}$ specification is only valid for equal loading of all outputs.

PARAMETER MEASUREMENT INFORMATION

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 200 MHz, Z_O = 50 Ω , t_r < 1.2 ns, t_f < 1.2 ns.

Figure 2. Test Load Circuit

PARAMETER MEASUREMENT INFORMATION (continued)

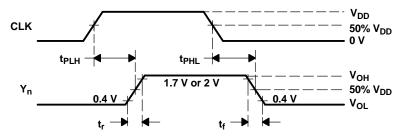


Figure 3. Voltage Waveforms Propagation Delay Times

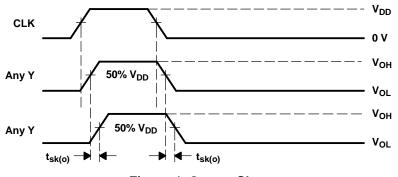
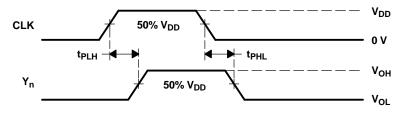
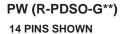



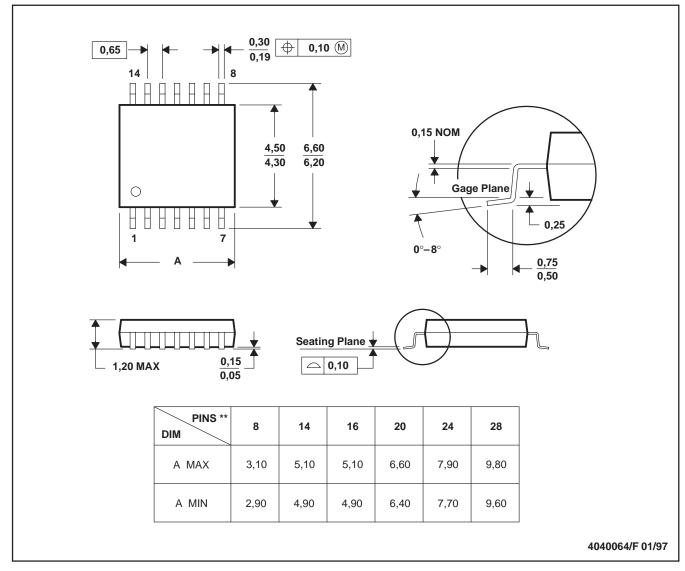
Figure 4. Output Skew

NOTE: $t_{sk(p)} = |t_{PLH} - t_{PHL}|$

Figure 5. Pulse Skew

PARAMETER MEASUREMENT INFORMATION (continued)




Figure 6.

MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated