- Phase-Locked Loop-Based Multiplier by Four
- Input Frequency Range: 2.5 MHz to 45 MHz
- Output Frequency Range: $10 \mathbf{M H z}$ to 180 MHz
- LVCMOS/LVTTL I/O Compatible
- Low Jitter (Cycle-Cycle): ± 120 ps Over the Range 75 MHz to 180 MHz
- Distributes One Clock Input to Two Banks of Four Outputs
- Auto Frequency Detection to Disable Device (Power-Down Mode)
- Operates From Single 3.3-V Supply
- Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 25- Ω On-Chip Series Damping Resistors
- No External RC Network Required
- Spread Spectrum Clock Compatible (SSC)
- Available in 16-Pin TSSOP Package

description

The CDCVF25084 is a high-performance, low-skew, low-jitter, phase-lock loop clock multiplier. It uses a PLL to precisely align, in both frequency and phase, the output clocks to the input clock signal including a multiplication factor of four. The CDCVF25084 operates from a nominal supply voltage of 3.3 V . The device also includes integrated series-damping resistors in the output drivers that make it ideal for driving point-to-point loads.

Two banks of four outputs each provide low-skew, low-jitter copies of CLKIN x four. All outputs operate at the same frequency. Output duty cycles are adjusted to 50%, independent of duty cycle at CLKIN. The device automatically goes into power-down mode when no input signal is applied to CLKIN and the outputs go into a low state. Unlike many products containing PLLs, the CDCVF25084 does not require an external RC network. The loop filter for the PLL is included on-chip, minimizing component count, space, and cost.
Because it is based on a PLL circuitry, the CDCVF25084 requires a stabilization time to achieve phase lock of the feedback signal to the reference signal. This stabilization is required following power up and application of a fixed-frequency signal at CLKIN and any following changes to the PLL reference.

The CDCVF25084 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

S2	S1	1Y0-1Y3	2Y0-2Y3	OUTPUT SOURCE	PLL SHUTDOWN
0	0	Hi-Z	Hi-Z	N/A	Yes
0	1	Active	Hi-Z	PLL \dagger	No
1	0	Active	Active	Input clock (PLL bypass)	Yes
1	1	Active	Active	PLL \dagger	No

\dagger A CLK input frequency $<2 \mathrm{MHz}$ switches the outputs to low level.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER

SCAS690A - APRIL 2003 - REVISED MAY 2003

Terminal Functions

TERMINAL		TYPE	DESCRIPTION
NAME	PIN NO.		
1Y[0:3]	2, 3, 14, 15	O	Bank 1Yn clock outputs. These outputs are low-skew copies of CLKIN. Each output has an integrated $25-\Omega$ series-damping resistor.
2Y[0:3]	$6,7,10,11$	O	Bank 2 Yn clock outputs. These outputs are low-skew copies of CLKIN. Each output has an integrated $25-\Omega$ series-damping resistor.
CLKIN	1	I	Clock input. CLKIN provides the clock signal to be distributed by the CDCVF25084 clock driver. CLKIN is used to provide the reference signal to the integrated PLL that generates the output signal. CLKIN must have a fixed frequency and phase in order for the PLL to acquire lock. Once the circuit is powered up and a valid signal is applied, a stabilization time is required for the PLL to phase lock the feedback signal to CLKIN.
FBIN	16	I	Feedback input. FBIN provides the feedback signal to the internal PLL. FBIN must be wired to one of the outputs to complete the feedback loop of the internal PLL. The integrated PLL synchronizes the FBIN and output signal so there is nominally zero-delay from input clock to output clock.
GND	5,12	Ground	Ground
S1, S2	9, 8	I	Select pins to determine mode of operation. See the FUNCTION TABLE for mode selection options.
VDD	4, 13	Power	Supply voltage. The supply voltage range is 3 V to 3.6 V

functional block diagram

CDCVF25084

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER

SCAS690A - APRIL 2003 - REVISED MAY 2003

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This value is limited to 4.6 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions

	MIN	NOM
	MAX	UNIT
Supply voltage, V_{DD}	3	3.3
Low level input voltage, V_{IL}	3.6	V
High level input voltage, V_{IH}	2	0.8
Input voltage, V_{I}	V	
High-level output current, $\mathrm{IOH}_{\mathrm{OH}}$	0	V
Low-level output current, IOL		3.6
Operating free-air temperature, T_{A}	V	

timing requirements over recommended ranges of supply voltage, load and operating free-air temperature

	MIN	NOM	MAX
UNIT			
Input clock frequency, fCLKIN	2.5	45	MHz
Input clock duty cycle	40%	60%	
Clock frequency, $\mathrm{f}_{\text {clkout }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	10	180

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYPt	MAX	UNIT
$\mathrm{V}_{\text {IK }}$	Input voltage	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2	V
I	Input current	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{DD}				± 5	$\mu \mathrm{A}$
IPD	Power-down current	$\mathrm{f}^{\text {CLKIN }}=0 \mathrm{MHz}$,	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
lDD^{\ddagger}	Dynamic current	$\mathrm{f}_{\text {out }}=80 \mathrm{MHz}$,	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		60	80	mA
loz	Output 3-state	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{DD},	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$			± 5	$\mu \mathrm{A}$
C_{1}	Input capacitance at FBIN, CLKIN	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{DD}			4		pF
C_{1}	Input capacitance at S1, S2	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{DD}			2.2		pF
Co°	Output capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{DD}			3		pF
VOH	High-level output voltage	$\mathrm{V}_{\mathrm{DD}}=$ min to max,	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-0.2$			V
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.1			
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{IOH}=-6 \mathrm{~mA}$	2.4			
VOL	Low-level output voltage	$\mathrm{V}_{\mathrm{DD}}=$ min to max,	$\mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A}$			0.2	V
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$			0.8	
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$			0.55	
${ }^{\text {IOH }}$	High-level output current	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$	-24			mA
		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$		-30		
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=3.135 \mathrm{~V}$			-15	
${ }^{\text {IOL }}$	Low-level output current	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.95 \mathrm{~V}$	26			mA
		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$		33		
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			14	

\dagger All typical values are at respective nominal $V_{D D}$.
\ddagger All outputs are switching; for IDD over frequency see Figure 9.

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER

SCAS690A - APRIL 2003 - REVISED MAY 2003
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYPt MAX	UNIT
t (lock)	PLL lock time	$\mathrm{f}_{\text {out }}=100 \mathrm{MHz}$		2	$\mu \mathrm{s}$
t(phoffset)	Phase offset (CLKIN to FBIN), (see Note 5)	$\mathrm{f}_{\text {out }}=40 \mathrm{MHz}$ to 75 MHz , Vth $=\mathrm{V}_{\text {DD }} / 2$		± 200	ps
		$\mathrm{f}_{\text {out }}=75 \mathrm{MHz}$ to 180 MHz , Vth $=\mathrm{V}_{\mathrm{DD}} / 2$		± 100	
tPLH, tPHL	Propagation delay	S2 = High, S1 = Low (PLL bypass mode)	2.3	4.5	ns
tsk(0)	Output skew (Yn to Yn) (see Note 4)	See Figure 3		$75 \quad 150$	ps
$\mathrm{t}_{\text {sk }}(\mathrm{pp})$	Part-to-part skew (low-to-high transition)	PLL bypass mode		900	ps
		PLL mode, $\mathrm{f}_{\text {out }}=40 \mathrm{MHz}$ to 75 MHz		350	
		PLL mode, $\mathrm{f}_{\text {out }}=75 \mathrm{MHz}$ to 180 MHz		300	
tiji(cc)	Jitter (cycle-to-cycle)	$\mathrm{f}_{\text {out }}=40 \mathrm{MHz}$ to 75 MHz		± 220	ps
		$\mathrm{f}_{\text {out }}=75 \mathrm{MHz}$ to 180 MHz		± 120	ps
tijit(per)	Period jitter	$\mathrm{f}_{\text {out }}=40 \mathrm{MHz}$ to 75 MHz		260	ps
		$\mathrm{f}_{\text {out }}=75 \mathrm{MHz}$ to 180 MHz		140	ps
$\left.\mathrm{tijit}^{(}\right)$)	Phase jitter	fout $=75 \mathrm{MHz}$ to 180 MHz , peak-to-peak (see Note 6)		± 110	ps
		$\mathrm{f}_{\text {out }}=75 \mathrm{MHz}$ to 180 MHz , RMS (see Note 6)		26	ps
odc	Output duty cycle	$\mathrm{f}_{\text {out }}=10 \mathrm{MHz}$ to 180 MHz	45\%	55\%	
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew	S2 = High, S1 = low (PLL bypass mode)		0.3	ns
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise / fall time rate	See Figure 4	1	3	V / ns

\dagger All typical values are at respective nominal $V_{D D}$.
NOTES: 4. The $\mathrm{t}_{\mathrm{sk}}(0)$ specification is only valid for equal loading of all outputs.
5. Similar waveform at CLKIN and FBIN are required. Output 1 Y 3 is used as a feedback to FBIN loaded with 11 pF and all other outputs have 15 pF . For phase displacement between CLKIN and Y-outputs, see Figure 5.
6. Input phase jitter $< \pm 50 \mathrm{ps}$; output sample size is 20000 cycles.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $Z_{O}=50 \Omega, t_{r}<1.2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<1.2 \mathrm{~ns}$
C. The outputs are measured one at a time with one transition per measurement.

Figure 1. Test Load Circuit

Figure 2. Voltage Thresholds for Measurements, Phase Offset (PLL Mode)

NOTE: \quad odc $=t_{1} /\left(t_{1}+t_{2}\right) \times 100 \%$
Figure 3. Output Skew and Output Duty Cycle (PLL Mode)

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER

NOTE: $\mathrm{t}_{\mathrm{sk}}(\mathrm{p})=|\mathrm{tpLh}-\mathrm{tpHL}|$
Figure 4. Propagation Delay and Pulse Skew (Non-PLL Mode)

Figure 5

PHASE OFFSET
vs
FREQUENCY

Figure 6

PARAMETER MEASUREMENT INFORMATION

CYCLE-TO-CYCLE / PERIOD JITTER
vs
FREQUENCY

Figure 7

TRANSFER CHARACTERISTIC FROM CLKIN TO Yn

Figure 8

Figure 9

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER

MECHANICAL DATA

PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN

PIM	P*	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CDCVF25084PW | ACTIVE | TSSOP | PW | 16 | 90 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CDCVF25084PWG4 | ACTIVE | TSSOP | PW | 16 | 90 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CDCVF25084PWR | ACTIVE | TSSOP | PW | 16 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CDCVF25084PWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 |
 no Sb/Br) $)$ | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ		Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	$\begin{gathered} \mathrm{P} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
CDCVF25084PWR	TSSOP	PW	16	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCVF25084PWR	TSSOP	PW	16	2000	346.0	346.0	29.0

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

